메뉴 건너뛰기




Volumn 3, Issue NOV, 2009, Pages

Statistical physics of pairwise probability models

Author keywords

Inference; Inverse ising problem; Maximum entropy distribution; Pairwise model

Indexed keywords

APPROXIMATE METHODS; CORTICAL NETWORK; DIMENSIONAL REDUCTION; INFERENCE; ISING PROBLEM; MAXIMUM ENTROPY DISTRIBUTION; PAIRWISE PROBABILITIES; STATISTICAL PHYSICS;

EID: 77949406582     PISSN: 16625188     EISSN: None     Source Type: Journal    
DOI: 10.3389/neuro.10.022.2009     Document Type: Article
Times cited : (112)

References (33)
  • 1
    • 85162002902 scopus 로고    scopus 로고
    • Near-maximum entropy models for binary neural representations of natural images
    • J. Platt, D. Koller, Y. Singer and S Roweis, eds (Cambridge, MA, MIT Press)
    • Bethge, M., and Berens, P. (2008). Near-maximum entropy models for binary neural representations of natural images. In Advances in Neural Information Processing Systems, Vol. 20, J. Platt, D. Koller, Y. Singer and S Roweis, eds (Cambridge, MA, MIT Press), pp. 97-104.
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 97-104
    • Bethge, M.1    Berens, P.2
  • 3
    • 0013109817 scopus 로고
    • Dynamics of spin systems with randomly asymmetric bonds: Ising spins and Glauber dynamics
    • Crisanti, A., and Sompolinsky, H. (1988). Dynamics of spin systems with randomly asymmetric bonds: ising spins and Glauber dynamics. Phys. Rev. A 37, 4865-4874.
    • (1988) Phys. Rev. A , vol.37 , pp. 4865-4874
    • Crisanti, A.1    Sompolinsky, H.2
  • 4
    • 0037877795 scopus 로고
    • Theory of correlations in stochastic neural networks
    • Ginzburg, I., and Sompolinsky, H. (1994). Theory of correlations in stochastic neural networks. Phys. Rev. E 50, 3171-3191.
    • (1994) Phys. Rev. E , vol.50 , pp. 3171-3191
    • Ginzburg, I.1    Sompolinsky, H.2
  • 5
    • 11644279337 scopus 로고
    • Time-dependent statistics of the ising model
    • Glauber, R. J. (1963). Time-dependent statistics of the ising model. J. Math. Phys. 4, 294-307.
    • (1963) J. Math. Phys. , vol.4 , pp. 294-307
    • Glauber, R.J.1
  • 6
    • 68649097627 scopus 로고    scopus 로고
    • Boltzmann machine
    • Hinton, G. E. (2007). Boltzmann machine. Scholarpedia 2, 1668.
    • (2007) Scholarpedia , vol.2 , pp. 1668
    • Hinton, G.E.1
  • 9
    • 0001000562 scopus 로고    scopus 로고
    • Efficient learning in Boltzmann machines using linear response theory
    • Kappen, H. J., and Rodriguez, F. B. (1998). Efficient learning in Boltzmann machines using linear response theory. Neural Comput. 10, 1137-1156.
    • (1998) Neural Comput. , vol.10 , pp. 1137-1156
    • Kappen, H.J.1    Rodriguez, F.B.2
  • 10
    • 24644462193 scopus 로고    scopus 로고
    • The storage capacity of potts models for semantic memory retrieval
    • Kropff, E., and Treves, A. (2005). The storage capacity of potts models for semantic memory retrieval. J. Stat. Mech. Theory Exp. 2, P08010.
    • (2005) J. Stat. Mech. Theory Exp. , vol.2
    • Kropff, E.1    Treves, A.2
  • 12
    • 0001028404 scopus 로고
    • The structure of bivariate distributions
    • Lancaster, H. (1958). The structure of bivariate distributions. Ann. Math. Stat. 29, 719-736.
    • (1958) Ann. Math. Stat. , vol.29 , pp. 719-736
    • Lancaster, H.1
  • 17
    • 23044490853 scopus 로고    scopus 로고
    • Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity
    • Okatan, M., Wilson, M. A., and Brown, E. N. (2005). Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Comput. 17, 1927-1961.
    • (2005) Neural Comput. , vol.17 , pp. 1927-1961
    • Okatan, M.1    Wilson, M.A.2    Brown, E.N.3
  • 19
    • 67049119347 scopus 로고    scopus 로고
    • Pairwise maximum entropy models for studying large biological systems: When they can work and when they can't
    • doi:10.1371/journal. pcbi.1000380
    • Roudi, Y., Nirenberg, S., and Latham, P. E. (2009a). Pairwise maximum entropy models for studying large biological systems: when they can work and when they can't. PLoS Comput. Biol. 5: e1000380. doi:10.1371/journal. pcbi.1000380.
    • (2009) PLoS Comput. Biol. , vol.5
    • Roudi, Y.1    Nirenberg, S.2    Latham, P.E.3
  • 20
    • 67549115079 scopus 로고    scopus 로고
    • The ising model for neural data: Model quality and approximate methods for extracting functional connectivity
    • Roudi, Y., Tyrcha, J., and Hertz, J. (2009b). The ising model for neural data: model quality and approximate methods for extracting functional connectivity. Phys. Rev. E. 79, 051915.
    • (2009) Phys. Rev. E. , vol.79 , pp. 051915
    • Roudi, Y.1    Tyrcha, J.2    Hertz, J.3
  • 21
    • 45749093771 scopus 로고    scopus 로고
    • Free association transitions in models of cortical latching dynamics
    • Russo, E., Namboodiri, V. M. K., Treves, A., and Kropff, E. (2008). Free association transitions in models of cortical latching dynamics. New J. Phys. 10, 015008.
    • (2008) New J. Phys. , vol.10 , pp. 015008
    • Russo, E.1    Namboodiri, V.M.K.2    Treves, A.3    Kropff, E.4
  • 22
    • 67049109244 scopus 로고
    • Maximum correlation coefficient (nonsymmetric case)
    • (Providence, RI, American Mathematical Society)
    • Sarmanov, O. (1963). Maximum correlation coefficient (nonsymmetric case). In: Selected Translations in Mathematical Statistics and Probability, Vol. 4 (Providence, RI, American Mathematical Society), pp. 271-275.
    • (1963) Selected Translations in Mathematical Statistics and Probability , vol.4 , pp. 271-275
    • Sarmanov, O.1
  • 23
    • 33646170322 scopus 로고    scopus 로고
    • Weak pairwise correlations imply strongly correlated network states in a neural population
    • Schneidman, E., Berry, M., Segev, R., and Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440, 1007-1012.
    • (2006) Nature , vol.440 , pp. 1007-1012
    • Schneidman, E.1    Berry, M.2    Segev, R.3    Bialek, W.4
  • 24
    • 64549086225 scopus 로고    scopus 로고
    • Small-correlation expansions for the inverse ising problem
    • Sessak, V., and Monasson, R. (2009). Small-correlation expansions for the inverse ising problem. J. Phys. A 42, 055001.
    • (2009) J. Phys. A , vol.42 , pp. 055001
    • Sessak, V.1    Monasson, R.2
  • 27
    • 0001143296 scopus 로고    scopus 로고
    • Mean-field theory of Boltzmann machine learning
    • Tanaka, T. (1998). Mean-field theory of Boltzmann machine learning. Phys. Rev. E 58, 2302-2310.
    • (1998) Phys. Rev. E , vol.58 , pp. 2302-2310
    • Tanaka, T.1
  • 29
    • 84996241537 scopus 로고
    • Solution of ' solvable model of a spin glass'
    • Thouless, D. J., Anderson, P. W., and Palmer, R. G. (1977). Solution of ' solvable model of a spin glass'. Philos. Mag. 35, 593-601.
    • (1977) Philos. Mag. , vol.35 , pp. 593-601
    • Thouless, D.J.1    Anderson, P.W.2    Palmer, R.G.3
  • 31
    • 12544253489 scopus 로고    scopus 로고
    • A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects
    • Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., and Brown, E. N. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. J. Neurophysiol. 93, 1074-1089.
    • (2005) J. Neurophysiol. , vol.93 , pp. 1074-1089
    • Truccolo, W.1    Eden, U.T.2    Fellows, M.R.3    Donoghue, J.P.4    Brown, E.N.5
  • 32
    • 0141695638 scopus 로고    scopus 로고
    • Understanding belief propagation and its generalizations
    • G. Lakemeyer and B. Nebel, eds (San Francisco, CA, Morgan Kaufmann Publishers)
    • Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2003). Understanding belief propagation and its generalizations. In Exploring Artificial Intelligence in the New Millennium, G. Lakemeyer and B. Nebel, eds (San Francisco, CA, Morgan Kaufmann Publishers).
    • (2003) Exploring Artificial Intelligence in the New Millennium
    • Yedidia, J.S.1    Freeman, W.T.2    Weiss, Y.3
  • 33
    • 56449124586 scopus 로고    scopus 로고
    • A small world of neuronal synchrony
    • Yu, S., Huang, D., Singer, W., and Nikolic, D. (2008). A small world of neuronal synchrony. Cereb. Cortex 18, 2891-2901.
    • (2008) Cereb. Cortex , vol.18 , pp. 2891-2901
    • Yu, S.1    Huang, D.2    Singer, W.3    Nikolic, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.