메뉴 건너뛰기




Volumn 10, Issue 3, 2013, Pages 505-509

Exploiting sparsity in hyperspectral image classification via graphical models

Author keywords

Classification; hyperspectral imagery; joint sparsity model; probabilistic graphical models; sparse representation; spatial correlation

Indexed keywords

HYPERSPECTRAL IMAGERY; JOINT SPARSITY; PROBABILISTIC GRAPHICAL MODELS; SPARSE REPRESENTATION; SPATIAL CORRELATIONS;

EID: 84870541423     PISSN: 1545598X     EISSN: None     Source Type: Journal    
DOI: 10.1109/LGRS.2012.2211858     Document Type: Article
Times cited : (76)

References (23)
  • 3
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug
    • F.Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 5
    • 34948836126 scopus 로고    scopus 로고
    • A novel context-sensitive SVM for classification of remote sensing images
    • DOI 10.1109/IGARSS.2006.646, 4241794, 2006 IEEE International Geoscience and Remote Sensing Symposium, IGARSS
    • F. Bovolo, L. Bruzzone, and M. Marconcini, "A novel context-sensitive SVM for classification of remote sensing images," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Denver, Jul. 2006, pp. 2498-2501. (Pubitemid 47516069)
    • (2006) International Geoscience and Remote Sensing Symposium (IGARSS) , pp. 2498-2501
    • Bovolo, F.1    Bruzzone, L.2    Marconcini, M.3
  • 6
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Aug
    • Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, "Spectral- spatial classification of hyperspectral imagery based on partitional clustering techniques," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2973-2987, Aug. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 7
    • 80052087931 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields
    • Mar.
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 809-823, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.3 , pp. 809-823
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 8
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral image classification using dictionary-based sparse representation
    • Oct.
    • Y. Chen, N. Nasrabadi, and T. D. Tran, "Hyperspectral image classification using dictionary-based sparse representation," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3973-3985, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.10 , pp. 3973-3985
    • Chen, Y.1    Nasrabadi, N.2    Tran, T.D.3
  • 9
    • 85032751046 scopus 로고    scopus 로고
    • Sparse signal acquisition and recovery with graphical models
    • Nov.
    • V. Cevher, P. Indyk, L. Carin, and R. Baraniuk, "Sparse signal acquisition and recovery with graphical models," IEEE Signal Process. Mag., vol. 27, no. 6, pp. 92-103, Nov. 2010.
    • (2010) IEEE Signal Process. Mag , vol.27 , Issue.6 , pp. 92-103
    • Cevher, V.1    Indyk, P.2    Carin, L.3    Baraniuk, R.4
  • 10
    • 79953814103 scopus 로고    scopus 로고
    • Learning graphical models for hypothesis testing and classification
    • Nov.
    • V. Y. F. Tan, S. Sanghavi, J. W. Fisher, and A. S. Willsky, "Learning graphical models for hypothesis testing and classification," IEEE Trans. Signal Process., vol. 58, no. 11, pp. 5481-5495, Nov. 2010.
    • (2010) IEEE Trans. Signal Process , vol.58 , Issue.11 , pp. 5481-5495
    • Tan, V.Y.F.1    Sanghavi, S.2    Fisher, J.W.3    Willsky, A.S.4
  • 11
    • 0001963082 scopus 로고    scopus 로고
    • A short introduction to boosting
    • Sep
    • Y. Freund and R. E. Schapire, "A short introduction to boosting," J. Jpn. Soc. Artif. Intell., vol. 14, no. 5, pp. 771-780, Sep. 1999.
    • (1999) J. Jpn. Soc. Artif. Intell , vol.14 , Issue.5 , pp. 771-780
    • Freund, Y.1    Schapire, R.E.2
  • 12
    • 35048889592 scopus 로고    scopus 로고
    • Boosting the tree augmented naive Bayes classifier
    • Proc. Intell. Data Eng. Automated Learn.
    • T. Downs and A. Tang, "Boosting the tree augmented naive Bayes classifier," in Proc. Intell. Data Eng. Automated Learn., Lecture Notes in Computer Science, 2004, vol. 3177, pp. 708-713.
    • (2004) Lecture Notes in Computer Science , vol.3177 , pp. 708-713
    • Downs, T.1    Tang, A.2
  • 14
    • 59749104367 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • Feb
    • A. M. Bruckstein, D. L. Donoho, and M. Elad, "From sparse solutions of systems of equations to sparse modeling of signals and images," SIAM Rev., vol. 51, no. 1, pp. 34-81, Feb. 2009.
    • (2009) SIAM Rev. , vol.51 , Issue.1 , pp. 34-81
    • Bruckstein, A.M.1    Donoho, D.L.2    Elad, M.3
  • 15
    • 30844445842 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit
    • DOI 10.1016/j.sigpro.2005.05.030, PII S0165168405002227, Sparse Approximations in Signal and Image Processing
    • J. A. Tropp, A. C. Gilbert, andM. J. Strauss, "Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit," Signal Process., vol. 86, no. 3, pp. 572-588, Mar. 2006. (Pubitemid 43106572)
    • (2006) Signal Processing , vol.86 , Issue.3 , pp. 572-588
    • Tropp, J.A.1    Gilbert, A.C.2    Strauss, M.J.3
  • 16
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Jan
    • G. F. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.1 , pp. 55-63
    • Hughes, G.F.1
  • 19
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • May
    • C. K. Chow and C. N. Liu, "Approximating discrete probability distributions with dependence trees," IEEE Trans. Inf. Theory, vol. IT-14, no. 3, pp. 462-467, May 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.3 , pp. 462-467
    • Chow, C.K.1    Liu, C.N.2
  • 20
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using Bayesian belief networks
    • Mar
    • G. F. Cooper, "The computational complexity of probabilistic inference using Bayesian belief networks," Artif. Intell., vol. 42, no. 2/3, pp. 393-405, Mar. 1990.
    • (1990) Artif. Intell , vol.42 , Issue.2-3 , pp. 393-405
    • Cooper, G.F.1
  • 21
    • 84856288217 scopus 로고    scopus 로고
    • Automatic target recognition using discriminative graphical models
    • U. Srinivas, V. Monga, and R. G. Raj, "Automatic target recognition using discriminative graphical models," in Proc. IEEE Int. Conf. Image Process., 2011, pp. 33-36.
    • (2011) Proc IEEE Int. Conf. Image Process , pp. 33-36
    • Srinivas, U.1    Monga, V.2    Raj, R.G.3
  • 22
    • 0032636659 scopus 로고    scopus 로고
    • Support vector machines for hyperspectral remote sensing classification
    • Jan
    • J. A. Gualtieri and R. F. Cromp, "Support vector machines for hyperspectral remote sensing classification," in Proc. SPIE, Jan. 1998, vol. 3584, pp. 221-232.
    • (1998) Proc. SPIE , vol.3584 , pp. 221-232
    • Gualtieri, J.A.1    Cromp, R.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.