-
1
-
-
84880083510
-
The infinite push: A new support vector ranking algorithm that directly optimizes accuracy at the absolute top of the list
-
S. Agarwal. The infinite push: A new support vector ranking algorithm that directly optimizes accuracy at the absolute top of the list. In SDM, pages 839-850, 2011.
-
(2011)
SDM
, pp. 839-850
-
-
Agarwal, S.1
-
2
-
-
21844440820
-
Generalization bounds for the area under the ROC curve
-
S. Agarwal, T. Graepel, R. Herbrich, S. Har-Peled, and D. Roth. Generalization bounds for the area under the ROC curve. JMLR, 6: 393-425, 2005.
-
(2005)
JMLR
, vol.6
, pp. 393-425
-
-
Agarwal, S.1
Graepel, T.2
Herbrich, R.3
Har-Peled, S.4
Roth, D.5
-
5
-
-
31844446958
-
Learning to rank using gradient descent
-
C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. Learning to rank using gradient descent. In ICML, pages 89-96, 2005.
-
(2005)
ICML
, pp. 89-96
-
-
Burges, C.1
Shaked, T.2
Renshaw, E.3
Lazier, A.4
Deeds, M.5
Hamilton, N.6
Hullender, G.7
-
6
-
-
51049098491
-
Ranking and empirical minimization of U-statistics
-
S. Clémençon, G. Lugosi, and N. Vayatis. Ranking and empirical minimization of U-statistics. Annals of Statistics, 36(2): 844-874, 2008.
-
(2008)
Annals of Statistics
, vol.36
, Issue.2
, pp. 844-874
-
-
Clémençon, S.1
Lugosi, G.2
Vayatis, N.3
-
7
-
-
37749025853
-
Ranking the best instances
-
S. Clémençon and N. Vayatis. Ranking the best instances. JMLR, 8: 2671-2699, 2007.
-
(2007)
JMLR
, vol.8
, pp. 2671-2699
-
-
Clémençon, S.1
Vayatis, N.2
-
9
-
-
84897965802
-
AUC optimization vs. Error rate minimization
-
C. Cortes and M. Mohri. AUC optimization vs. error rate minimization. In NIPS, pages 313-320. 2004.
-
(2004)
NIPS
, pp. 313-320
-
-
Cortes, C.1
Mohri, M.2
-
10
-
-
56449092085
-
Efficient projections onto the l1-ball for learning in high dimensions
-
J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the l1-ball for learning in high dimensions. In ICML, pages 272-279, 2008.
-
(2008)
ICML
, pp. 272-279
-
-
Duchi, J.1
Shalev-Shwartz, S.2
Singer, Y.3
Chandra, T.4
-
11
-
-
50949133669
-
LIBLINEAR: A library for large linear classification
-
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear classification. JMLR, 9: 1871-1874, 2008.
-
(2008)
JMLR
, vol.9
, pp. 1871-1874
-
-
Fan, R.-E.1
Chang, K.-W.2
Hsieh, C.-J.3
Wang, X.-R.4
Lin, C.-J.5
-
12
-
-
4644367942
-
An efficient boosting algorithm for combining preferences
-
Y. Freund, R. Iyer, R. Schapire, and Y Singer. An efficient boosting algorithm for combining preferences. JMLR, 4: 933-969, 2003.
-
(2003)
JMLR
, vol.4
, pp. 933-969
-
-
Freund, Y.1
Iyer, R.2
Schapire, R.3
Singer, Y.4
-
13
-
-
84937964969
-
One-pass AUC optimization
-
W. Gao, R. Jin, S. Zhu, and Z.-H. Zhou. One-pass AUC optimization. In ICML, pages 906-914, 2013.
-
(2013)
ICML
, pp. 906-914
-
-
Gao, W.1
Jin, R.2
Zhu, S.3
Zhou, Z.-H.4
-
15
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (ROC) curve
-
J. Hanley and B. McNeil. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143: 29-36, 1982.
-
(1982)
Radiology
, vol.143
, pp. 29-36
-
-
Hanley, J.1
McNeil, B.2
-
16
-
-
28444451621
-
-
chapter Advances in Large Margin Classifiers MIT Press, Cambridge, MA
-
R. Herbrich, T. Graepel, and K. Obermayer. Large Margin Rank Boundaries for Ordinal Regression, chapter Advances in Large Margin Classifiers, pages 115-132. MIT Press, Cambridge, MA, 2000.
-
(2000)
Large Margin Rank Boundaries for Ordinal Regression
, pp. 115-132
-
-
Herbrich, R.1
Graepel, T.2
Obermayer, K.3
-
17
-
-
31844446804
-
A support vector method for multivariate performance measures
-
Bonn, Germany
-
T. Joachims. A support vector method for multivariate performance measures. In ICML, pages 377-384, Bonn, Germany, 2005.
-
(2005)
ICML
, pp. 377-384
-
-
Joachims, T.1
-
18
-
-
33749563073
-
Training linear SVMs in linear time
-
T. Joachims. Training linear SVMs in linear time. In KDD, pages 217-226, 2006.
-
(2006)
KDD
, pp. 217-226
-
-
Joachims, T.1
-
19
-
-
84884227939
-
Conjugate relation between loss functions and uncertainty sets in classification problems
-
T. Kanamori, A. Takeda, and T. Suzuki. Conjugate relation between loss functions and uncertainty sets in classification problems. JMLR, 14: 1461-1504, 2013.
-
(2013)
JMLR
, vol.14
, pp. 1461-1504
-
-
Kanamori, T.1
Takeda, A.2
Suzuki, T.3
-
20
-
-
80053441004
-
Bipartite ranking through minimization of univariate loss
-
W. Kotlowski, K. Dembczynski, and E. Hüllermeier. Bipartite ranking through minimization of univariate loss. In ICML, pages 1113-1120, 2011.
-
(2011)
ICML
, pp. 1113-1120
-
-
Kotlowski, W.1
Dembczynski, K.2
Hüllermeier, E.3
-
23
-
-
84885010138
-
Efficient optimization of performance measures by classifier adaptation
-
N. Li, I. W. Tsang, and Z.-H. Zhou. Efficient optimization of performance measures by classifier adaptation. IEEE-PAMI, 35(6): 1370-1382, 2013.
-
(2013)
IEEE-PAMI
, vol.35
, Issue.6
, pp. 1370-1382
-
-
Li, N.1
Tsang, I.W.2
Zhou, Z.-H.3
-
24
-
-
71149115443
-
Efficient euclidean projections in linear time
-
J. Liu and J. Ye. Efficient Euclidean projections in linear time. In ICML, pages 657-664, 2009.
-
(2009)
ICML
, pp. 657-664
-
-
Liu, J.1
Ye, J.2
-
26
-
-
84898940136
-
On the relationship between binary classification, bipartite ranking, and binary class probability estimation
-
H. Narasimhan and S. Agarwal. On the relationship between binary classification, bipartite ranking, and binary class probability estimation. In NIPS, pages 2913-2921. 2013.
-
(2013)
NIPS
, pp. 2913-2921
-
-
Narasimhan, H.1
Agarwal, S.2
-
27
-
-
84897515691
-
A structural SVM based approach for optimizing partial AUC
-
H. Narasimhan and S. Agarwal. A structural SVM based approach for optimizing partial AUC. In ICML, pages 516-524, 2013.
-
(2013)
ICML
, pp. 516-524
-
-
Narasimhan, H.1
Agarwal, S.2
-
28
-
-
85008480264
-
SVMpAUCtight: A new support vector method for optimizing partial AUC based on a tight convex upper bound
-
H. Narasimhan and S. Agarwal. SVMpAUCtight: A new support vector method for optimizing partial AUC based on a tight convex upper bound. In KDD, pages 167-175, 2013.
-
(2013)
KDD
, pp. 167-175
-
-
Narasimhan, H.1
Agarwal, S.2
-
31
-
-
84867122531
-
Sparse support vector infinite push
-
A. Rakotomamonjy. Sparse support vector infinite push. In ICML, 2012.
-
(2012)
ICML
-
-
Rakotomamonjy, A.1
-
32
-
-
70350663110
-
Learning optimal ranking with tensor factorization for tag recommendation
-
S. Rendle, L. Balby Marinho, A. Nanopoulos, and L. Schmidt-Thieme. Learning optimal ranking with tensor factorization for tag recommendation. In KDD, pages 727-736, 2009.
-
(2009)
KDD
, pp. 727-736
-
-
Rendle, S.1
Balby Marinho, L.2
Nanopoulos, A.3
Schmidt-Thieme, L.4
-
33
-
-
70450255147
-
Margin-based ranking and an equivalence between adaboost and rankboost
-
C. Rudin and R. Schapire. Margin-based ranking and an equivalence between adaboost and rankboost. JMLR, 10: 2193-2232, 2009.
-
(2009)
JMLR
, vol.10
, pp. 2193-2232
-
-
Rudin, C.1
Schapire, R.2
-
34
-
-
33745800276
-
Efficient learning of label ranking by soft projections onto polyhedra
-
S. Shalev-Shwartz and Y. Singer. Efficient learning of label ranking by soft projections onto polyhedra. JMLR, 7: 1567-1599, 2006.
-
(2006)
JMLR
, vol.7
, pp. 1567-1599
-
-
Shalev-Shwartz, S.1
Singer, Y.2
-
35
-
-
78649409198
-
Sparse semi-supervised learning using conjugate functions
-
S. Sun and J. Shawe-Taylor. Sparse semi-supervised learning using conjugate functions. JMLR, 11: 2423-2455, 2010.
-
(2010)
JMLR
, vol.11
, pp. 2423-2455
-
-
Sun, S.1
Shawe-Taylor, J.2
-
36
-
-
34249062309
-
On the consistency of multiclass classification methods
-
A. Tewari and P. Bartlett. On the consistency of multiclass classification methods. JMLR, 8: 1007-1025, 2007.
-
(2007)
JMLR
, vol.8
, pp. 1007-1025
-
-
Tewari, A.1
Bartlett, P.2
-
37
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. JMLR, 6: 1453-1484, 2005.
-
(2005)
JMLR
, vol.6
, pp. 1453-1484
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
-
38
-
-
71149107027
-
Ranking with ordered weighted pairwise classification
-
Montreal, Canada
-
N. Usunier, D. Buffoni, and P. Gallinari. Ranking with ordered weighted pairwise classification. In ICML, pages 1057-1064, Montreal, Canada, 2009.
-
(2009)
ICML
, pp. 1057-1064
-
-
Usunier, N.1
Buffoni, D.2
Gallinari, P.3
-
39
-
-
80052413486
-
Learning to rank by optimizing NDCG measure
-
H. Valizadegan, R. Jin, R. Zhang, and J. Mao. Learning to rank by optimizing NDCG measure. In NIPS, pages 1883-1891. 2009.
-
(2009)
NIPS
, pp. 1883-1891
-
-
Valizadegan, H.1
Jin, R.2
Zhang, R.3
Mao, J.4
-
40
-
-
84893377206
-
Multi-label learning with PRO loss
-
M. Xu, Y.-F. Li, and Z.-H. Zhou. Multi-label learning with PRO loss. In AAAI, pages 998-1004, 2013.
-
(2013)
AAAI
, pp. 998-1004
-
-
Xu, M.1
Li, Y.-F.2
Zhou, Z.-H.3
-
41
-
-
84877740547
-
Nyström method vs random fourier features: A theoretical and empirical comparison
-
MIT Press
-
T. Yang, Y.-F. Li, M. Mahdavi, R. Jin, and Z.-H. Zhou. Nyström method vs random Fourier features: A theoretical and empirical comparison. In NIPS, pages 485-493. MIT Press, 2012.
-
(2012)
NIPS
, pp. 485-493
-
-
Yang, T.1
Li, Y.-F.2
Mahdavi, M.3
Jin, R.4
Zhou, Z.-H.5
-
42
-
-
36448983903
-
A support vector method for optimizing average precision
-
Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for optimizing average precision. In SIGIR, pages 271-278, 2007.
-
(2007)
SIGIR
, pp. 271-278
-
-
Yue, Y.1
Finley, T.2
Radlinski, F.3
Joachims, T.4
-
43
-
-
80053451407
-
Online AUC maximization
-
Bellevue, WA
-
P. Zhao, S.C.H. Hoi, R. Jin, and T. Yang. Online AUC maximization. In ICML, pages 233-240, Bellevue, WA, 2011.
-
(2011)
ICML
, pp. 233-240
-
-
Zhao, P.1
Hoi, S.C.H.2
Jin, R.3
Yang, T.4
|