메뉴 건너뛰기




Volumn 2, Issue January, 2014, Pages 1502-1510

Top rank optimization in linear time

Author keywords

[No Author keywords available]

Indexed keywords

DATA HANDLING;

EID: 84937934366     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (71)

References (43)
  • 1
    • 84880083510 scopus 로고    scopus 로고
    • The infinite push: A new support vector ranking algorithm that directly optimizes accuracy at the absolute top of the list
    • S. Agarwal. The infinite push: A new support vector ranking algorithm that directly optimizes accuracy at the absolute top of the list. In SDM, pages 839-850, 2011.
    • (2011) SDM , pp. 839-850
    • Agarwal, S.1
  • 2
    • 21844440820 scopus 로고    scopus 로고
    • Generalization bounds for the area under the ROC curve
    • S. Agarwal, T. Graepel, R. Herbrich, S. Har-Peled, and D. Roth. Generalization bounds for the area under the ROC curve. JMLR, 6: 393-425, 2005.
    • (2005) JMLR , vol.6 , pp. 393-425
    • Agarwal, S.1    Graepel, T.2    Herbrich, R.3    Har-Peled, S.4    Roth, D.5
  • 6
    • 51049098491 scopus 로고    scopus 로고
    • Ranking and empirical minimization of U-statistics
    • S. Clémençon, G. Lugosi, and N. Vayatis. Ranking and empirical minimization of U-statistics. Annals of Statistics, 36(2): 844-874, 2008.
    • (2008) Annals of Statistics , vol.36 , Issue.2 , pp. 844-874
    • Clémençon, S.1    Lugosi, G.2    Vayatis, N.3
  • 7
    • 37749025853 scopus 로고    scopus 로고
    • Ranking the best instances
    • S. Clémençon and N. Vayatis. Ranking the best instances. JMLR, 8: 2671-2699, 2007.
    • (2007) JMLR , vol.8 , pp. 2671-2699
    • Clémençon, S.1    Vayatis, N.2
  • 9
    • 84897965802 scopus 로고    scopus 로고
    • AUC optimization vs. Error rate minimization
    • C. Cortes and M. Mohri. AUC optimization vs. error rate minimization. In NIPS, pages 313-320. 2004.
    • (2004) NIPS , pp. 313-320
    • Cortes, C.1    Mohri, M.2
  • 10
    • 56449092085 scopus 로고    scopus 로고
    • Efficient projections onto the l1-ball for learning in high dimensions
    • J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the l1-ball for learning in high dimensions. In ICML, pages 272-279, 2008.
    • (2008) ICML , pp. 272-279
    • Duchi, J.1    Shalev-Shwartz, S.2    Singer, Y.3    Chandra, T.4
  • 11
    • 50949133669 scopus 로고    scopus 로고
    • LIBLINEAR: A library for large linear classification
    • R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear classification. JMLR, 9: 1871-1874, 2008.
    • (2008) JMLR , vol.9 , pp. 1871-1874
    • Fan, R.-E.1    Chang, K.-W.2    Hsieh, C.-J.3    Wang, X.-R.4    Lin, C.-J.5
  • 12
    • 4644367942 scopus 로고    scopus 로고
    • An efficient boosting algorithm for combining preferences
    • Y. Freund, R. Iyer, R. Schapire, and Y Singer. An efficient boosting algorithm for combining preferences. JMLR, 4: 933-969, 2003.
    • (2003) JMLR , vol.4 , pp. 933-969
    • Freund, Y.1    Iyer, R.2    Schapire, R.3    Singer, Y.4
  • 13
    • 84937964969 scopus 로고    scopus 로고
    • One-pass AUC optimization
    • W. Gao, R. Jin, S. Zhu, and Z.-H. Zhou. One-pass AUC optimization. In ICML, pages 906-914, 2013.
    • (2013) ICML , pp. 906-914
    • Gao, W.1    Jin, R.2    Zhu, S.3    Zhou, Z.-H.4
  • 15
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • J. Hanley and B. McNeil. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143: 29-36, 1982.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.1    McNeil, B.2
  • 17
    • 31844446804 scopus 로고    scopus 로고
    • A support vector method for multivariate performance measures
    • Bonn, Germany
    • T. Joachims. A support vector method for multivariate performance measures. In ICML, pages 377-384, Bonn, Germany, 2005.
    • (2005) ICML , pp. 377-384
    • Joachims, T.1
  • 18
    • 33749563073 scopus 로고    scopus 로고
    • Training linear SVMs in linear time
    • T. Joachims. Training linear SVMs in linear time. In KDD, pages 217-226, 2006.
    • (2006) KDD , pp. 217-226
    • Joachims, T.1
  • 19
    • 84884227939 scopus 로고    scopus 로고
    • Conjugate relation between loss functions and uncertainty sets in classification problems
    • T. Kanamori, A. Takeda, and T. Suzuki. Conjugate relation between loss functions and uncertainty sets in classification problems. JMLR, 14: 1461-1504, 2013.
    • (2013) JMLR , vol.14 , pp. 1461-1504
    • Kanamori, T.1    Takeda, A.2    Suzuki, T.3
  • 20
    • 80053441004 scopus 로고    scopus 로고
    • Bipartite ranking through minimization of univariate loss
    • W. Kotlowski, K. Dembczynski, and E. Hüllermeier. Bipartite ranking through minimization of univariate loss. In ICML, pages 1113-1120, 2011.
    • (2011) ICML , pp. 1113-1120
    • Kotlowski, W.1    Dembczynski, K.2    Hüllermeier, E.3
  • 21
    • 57349120367 scopus 로고    scopus 로고
    • Direct optimization of ranking measures
    • Q.V. Le and A. Smola. Direct optimization of ranking measures. CoRR, abs/0704.3359, 2007.
    • (2007) CoRR, Abs/0704.3359
    • Le, Q.V.1    Smola, A.2
  • 23
    • 84885010138 scopus 로고    scopus 로고
    • Efficient optimization of performance measures by classifier adaptation
    • N. Li, I. W. Tsang, and Z.-H. Zhou. Efficient optimization of performance measures by classifier adaptation. IEEE-PAMI, 35(6): 1370-1382, 2013.
    • (2013) IEEE-PAMI , vol.35 , Issue.6 , pp. 1370-1382
    • Li, N.1    Tsang, I.W.2    Zhou, Z.-H.3
  • 24
    • 71149115443 scopus 로고    scopus 로고
    • Efficient euclidean projections in linear time
    • J. Liu and J. Ye. Efficient Euclidean projections in linear time. In ICML, pages 657-664, 2009.
    • (2009) ICML , pp. 657-664
    • Liu, J.1    Ye, J.2
  • 26
    • 84898940136 scopus 로고    scopus 로고
    • On the relationship between binary classification, bipartite ranking, and binary class probability estimation
    • H. Narasimhan and S. Agarwal. On the relationship between binary classification, bipartite ranking, and binary class probability estimation. In NIPS, pages 2913-2921. 2013.
    • (2013) NIPS , pp. 2913-2921
    • Narasimhan, H.1    Agarwal, S.2
  • 27
    • 84897515691 scopus 로고    scopus 로고
    • A structural SVM based approach for optimizing partial AUC
    • H. Narasimhan and S. Agarwal. A structural SVM based approach for optimizing partial AUC. In ICML, pages 516-524, 2013.
    • (2013) ICML , pp. 516-524
    • Narasimhan, H.1    Agarwal, S.2
  • 28
    • 85008480264 scopus 로고    scopus 로고
    • SVMpAUCtight: A new support vector method for optimizing partial AUC based on a tight convex upper bound
    • H. Narasimhan and S. Agarwal. SVMpAUCtight: A new support vector method for optimizing partial AUC based on a tight convex upper bound. In KDD, pages 167-175, 2013.
    • (2013) KDD , pp. 167-175
    • Narasimhan, H.1    Agarwal, S.2
  • 31
    • 84867122531 scopus 로고    scopus 로고
    • Sparse support vector infinite push
    • A. Rakotomamonjy. Sparse support vector infinite push. In ICML, 2012.
    • (2012) ICML
    • Rakotomamonjy, A.1
  • 32
    • 70350663110 scopus 로고    scopus 로고
    • Learning optimal ranking with tensor factorization for tag recommendation
    • S. Rendle, L. Balby Marinho, A. Nanopoulos, and L. Schmidt-Thieme. Learning optimal ranking with tensor factorization for tag recommendation. In KDD, pages 727-736, 2009.
    • (2009) KDD , pp. 727-736
    • Rendle, S.1    Balby Marinho, L.2    Nanopoulos, A.3    Schmidt-Thieme, L.4
  • 33
    • 70450255147 scopus 로고    scopus 로고
    • Margin-based ranking and an equivalence between adaboost and rankboost
    • C. Rudin and R. Schapire. Margin-based ranking and an equivalence between adaboost and rankboost. JMLR, 10: 2193-2232, 2009.
    • (2009) JMLR , vol.10 , pp. 2193-2232
    • Rudin, C.1    Schapire, R.2
  • 34
    • 33745800276 scopus 로고    scopus 로고
    • Efficient learning of label ranking by soft projections onto polyhedra
    • S. Shalev-Shwartz and Y. Singer. Efficient learning of label ranking by soft projections onto polyhedra. JMLR, 7: 1567-1599, 2006.
    • (2006) JMLR , vol.7 , pp. 1567-1599
    • Shalev-Shwartz, S.1    Singer, Y.2
  • 35
    • 78649409198 scopus 로고    scopus 로고
    • Sparse semi-supervised learning using conjugate functions
    • S. Sun and J. Shawe-Taylor. Sparse semi-supervised learning using conjugate functions. JMLR, 11: 2423-2455, 2010.
    • (2010) JMLR , vol.11 , pp. 2423-2455
    • Sun, S.1    Shawe-Taylor, J.2
  • 36
    • 34249062309 scopus 로고    scopus 로고
    • On the consistency of multiclass classification methods
    • A. Tewari and P. Bartlett. On the consistency of multiclass classification methods. JMLR, 8: 1007-1025, 2007.
    • (2007) JMLR , vol.8 , pp. 1007-1025
    • Tewari, A.1    Bartlett, P.2
  • 37
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. JMLR, 6: 1453-1484, 2005.
    • (2005) JMLR , vol.6 , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 38
    • 71149107027 scopus 로고    scopus 로고
    • Ranking with ordered weighted pairwise classification
    • Montreal, Canada
    • N. Usunier, D. Buffoni, and P. Gallinari. Ranking with ordered weighted pairwise classification. In ICML, pages 1057-1064, Montreal, Canada, 2009.
    • (2009) ICML , pp. 1057-1064
    • Usunier, N.1    Buffoni, D.2    Gallinari, P.3
  • 39
    • 80052413486 scopus 로고    scopus 로고
    • Learning to rank by optimizing NDCG measure
    • H. Valizadegan, R. Jin, R. Zhang, and J. Mao. Learning to rank by optimizing NDCG measure. In NIPS, pages 1883-1891. 2009.
    • (2009) NIPS , pp. 1883-1891
    • Valizadegan, H.1    Jin, R.2    Zhang, R.3    Mao, J.4
  • 40
    • 84893377206 scopus 로고    scopus 로고
    • Multi-label learning with PRO loss
    • M. Xu, Y.-F. Li, and Z.-H. Zhou. Multi-label learning with PRO loss. In AAAI, pages 998-1004, 2013.
    • (2013) AAAI , pp. 998-1004
    • Xu, M.1    Li, Y.-F.2    Zhou, Z.-H.3
  • 41
    • 84877740547 scopus 로고    scopus 로고
    • Nyström method vs random fourier features: A theoretical and empirical comparison
    • MIT Press
    • T. Yang, Y.-F. Li, M. Mahdavi, R. Jin, and Z.-H. Zhou. Nyström method vs random Fourier features: A theoretical and empirical comparison. In NIPS, pages 485-493. MIT Press, 2012.
    • (2012) NIPS , pp. 485-493
    • Yang, T.1    Li, Y.-F.2    Mahdavi, M.3    Jin, R.4    Zhou, Z.-H.5
  • 42
    • 36448983903 scopus 로고    scopus 로고
    • A support vector method for optimizing average precision
    • Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for optimizing average precision. In SIGIR, pages 271-278, 2007.
    • (2007) SIGIR , pp. 271-278
    • Yue, Y.1    Finley, T.2    Radlinski, F.3    Joachims, T.4
  • 43
    • 80053451407 scopus 로고    scopus 로고
    • Online AUC maximization
    • Bellevue, WA
    • P. Zhao, S.C.H. Hoi, R. Jin, and T. Yang. Online AUC maximization. In ICML, pages 233-240, Bellevue, WA, 2011.
    • (2011) ICML , pp. 233-240
    • Zhao, P.1    Hoi, S.C.H.2    Jin, R.3    Yang, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.