-
1
-
-
84880083510
-
The infinite push: A new support vector ranking algorithm that directly optimizes accuracy at the absolute top of the list
-
S. Agarwal. The infinite push: A new support vector ranking algorithm that directly optimizes accuracy at the absolute top of the list. In Proceedings of the SIAM International Conference on Data Mining, 2011.
-
(2011)
Proceedings of the SIAM International Conference on Data Mining
-
-
Agarwal, S.1
-
3
-
-
0038453192
-
Rademacher and Gaussian complexities: Risk bounds and structural results
-
P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3:2002, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 2002
-
-
Bartlett, P.L.1
Mendelson, S.2
-
4
-
-
80051762104
-
Distributed optimization and statistical learning via the alternating direction method of multipliers
-
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1):1-122, 2011.
-
(2011)
Foundations and Trends in Machine Learning
, vol.3
, Issue.1
, pp. 1-122
-
-
Boyd, S.1
Parikh, N.2
Chu, E.3
Peleato, B.4
Eckstein, J.5
-
7
-
-
31844446958
-
Learning to rank using gradient descent
-
New York, NY, USA. ACM
-
C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. Learning to rank using gradient descent. In Proceedings of the 22nd international conference on Machine learning, ICML '05, pages 89-96, New York, NY, USA, 2005. ACM.
-
(2005)
Proceedings of the 22nd International Conference on Machine Learning, ICML '05
, pp. 89-96
-
-
Burges, C.1
Shaked, T.2
Renshaw, E.3
Lazier, A.4
Deeds, M.5
Hamilton, N.6
Hullender, G.7
-
8
-
-
84864039510
-
Learning to rank with nonsmooth cost functions
-
C. J. C. Burges, R. Ragno, and Q. V. Le. Learning to rank with nonsmooth cost functions. In NIPS, pages 193-200, 2006.
-
(2006)
NIPS
, pp. 193-200
-
-
Burges, C.J.C.1
Ragno, R.2
Le, Q.V.3
-
10
-
-
55349114379
-
Statistical analysis of Bayes optimal subset ranking
-
D. Cossock and T. Zhang. Statistical analysis of Bayes optimal subset ranking. IEEE Transactions on Information Theory, 54(11):5140-5154, 2008.
-
(2008)
IEEE Transactions on Information Theory
, vol.54
, Issue.11
, pp. 5140-5154
-
-
Cossock, D.1
Zhang, T.2
-
12
-
-
4644367942
-
An efficient boosting algorithm for combining preferences
-
December
-
Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res., 4, December 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.4
-
-
Freund, Y.1
Iyer, R.2
Schapire, R.E.3
Singer, Y.4
-
14
-
-
0242456822
-
Optimizing search engines using clickthrough data
-
New York, NY, USA. ACM
-
T. Joachims. Optimizing search engines using clickthrough data. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '02, pages 133-142, New York, NY, USA, 2002. ACM.
-
(2002)
Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '02
, pp. 133-142
-
-
Joachims, T.1
-
15
-
-
31844446804
-
A support vector method for multivariate performance measures
-
T. Joachims. A support vector method for multivariate performance measures. In ICML, pages 377-384, 2005.
-
(2005)
ICML
, pp. 377-384
-
-
Joachims, T.1
-
16
-
-
0001152423
-
On Bahadur's representation of sample quantiles
-
J. Kiefer. On Bahadur's representation of sample quantiles. Annals of Mathematical Statistics, 38, 1967.
-
(1967)
Annals of Mathematical Statistics
, vol.38
-
-
Kiefer, J.1
-
18
-
-
0036104545
-
Empirical margin distributions and bounding the generalization error of combined classifiers
-
V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics, 30, 2002.
-
(2002)
Annals of Statistics
, vol.30
-
-
Koltchinskii, V.1
Panchenko, D.2
-
21
-
-
26944478552
-
Margin-based ranking meets boosting in the middle
-
C. Rudin, C. Cortes, M. Mohri, and R. E. Schapire. Margin-based ranking meets boosting in the middle. In COLT, pages 63-78, 2005.
-
(2005)
COLT
, pp. 63-78
-
-
Rudin, C.1
Cortes, C.2
Mohri, M.3
Schapire, R.E.4
-
22
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research, 6:1453-1484, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1453-1484
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
|