메뉴 건너뛰기




Volumn 9, Issue 5, 2015, Pages 636-642

Nano(Q)SAR: Challenges, pitfalls and perspectives

Author keywords

Nanotoxicology; QSAR; Review

Indexed keywords

NANOMATERIAL;

EID: 84937933471     PISSN: 17435390     EISSN: 17435404     Source Type: Journal    
DOI: 10.3109/17435390.2014.952698     Document Type: Article
Times cited : (64)

References (91)
  • 1
    • 84879555223 scopus 로고    scopus 로고
    • A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions
    • Anderson W, Kozak D, Coleman VA, Jämting A K, Trau M. 2013. A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions. J Colloid Interface Sci 405:322-30.
    • (2013) J Colloid Interface Sci , vol.405 , pp. 322-330
    • Anderson, W.1    Kozak, D.2    Coleman, V.A.3    Jämting, A.K.4    Trau, M.5
  • 2
    • 84877293087 scopus 로고    scopus 로고
    • Nanoparticle dispersity in toxicology
    • Baalousha M, Lead JR. 2013. Nanoparticle dispersity in toxicology. Nat Nanotechnol 8:308-9.
    • (2013) Nat Nanotechnol , vol.8 , pp. 308-309
    • Baalousha, M.1    Lead, J.R.2
  • 4
    • 40949110149 scopus 로고    scopus 로고
    • Predictivity and reliability of QSAR models: The case of mutagens and carcinogens
    • Benigni R, Bossa C. 2008. Predictivity and reliability of QSAR models: the case of mutagens and carcinogens. Toxicol Mech Methods 18: 137-47.
    • (2008) Toxicol Mech Methods , vol.18 , pp. 137-147
    • Benigni, R.1    Bossa, C.2
  • 5
    • 33847767499 scopus 로고    scopus 로고
    • The expanding role of predictive toxicology: An update on the (Q) sar models for mutagens and carcinogens
    • Benigni R, Netzeva TI, Benfenati E, Bossa C, Franke R, Helma C, et al. 2007. The expanding role of predictive toxicology: An update on the (Q) sar models for mutagens and carcinogens. J Env Sci Health C 25: 53-97.
    • (2007) J Env Sci Health C , vol.25 , pp. 53-97
    • Benigni, R.1    Netzeva, T.I.2    Benfenati, E.3    Bossa, C.4    Franke, R.5    Helma, C.6
  • 6
    • 72149125305 scopus 로고    scopus 로고
    • Assessing the reproductive toxicity of some (Con) azole compounds using a structure-activity relationship approach
    • Bolcic-Tavcar M, Vracko M. 2009. Assessing the reproductive toxicity of some (Con) azole compounds using a structure-activity relationship approach. Sar QSAR Environ Res 20:7-8.
    • (2009) Sar QSAR Environ Res , vol.20 , pp. 7-8
    • Bolcic-Tavcar, M.1    Vracko, M.2
  • 9
    • 79957797236 scopus 로고    scopus 로고
    • A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles
    • Burello E, Worth AP. 2011b. A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology 5: 228-35.
    • (2011) Nanotoxicology , vol.5 , pp. 228-235
    • Burello, E.1    Worth, A.P.2
  • 11
    • 84937924205 scopus 로고    scopus 로고
    • PCA-Based representations of graphs for prediction in QSAR studies
    • Berlin, Heidelberg, Germany: Springer
    • Cardin R, Michielan L, Moro S, Sperduti A. 2009. PCA-Based Representations of Graphs for Prediction in QSAR Studies. Artificial Neural Networks-Icann 2009. Berlin, Heidelberg, Germany: Springer.
    • (2009) Artificial Neural Networks-Icann 2009
    • Cardin, R.1    Michielan, L.2    Moro, S.3    Sperduti, A.4
  • 12
    • 84878140376 scopus 로고    scopus 로고
    • Daphnia and fish toxicity of (benzo) triazoles: Validated qsar models, and interspecies quantitative activity-activity modelling
    • Cassani S, Kovarich S, Papa E, Roy PP, Van Der Wal L, Gramatica P. 2013. Daphnia and fish toxicity of (benzo) triazoles: validated qsar models, and interspecies quantitative activity-activity modelling. J Hazard Mater 258-259:50-60.
    • (2013) J Hazard Mater 258 , vol.259 , pp. 50-60
    • Cassani, S.1    Kovarich, S.2    Papa, E.3    Roy, P.P.4    Van Der Wal, L.5    Gramatica, P.6
  • 13
    • 84865741803 scopus 로고    scopus 로고
    • Quantitative nanostructure-activity relationship modelling of nanoparticles
    • Chau YT, Yap CW. 2012. Quantitative nanostructure-activity relationship modelling of nanoparticles. Rsc Adv 2:8489-96.
    • (2012) Rsc Adv , vol.2 , pp. 8489-8496
    • Chau, Y.T.1    Yap, C.W.2
  • 14
    • 80053295024 scopus 로고    scopus 로고
    • Real external predictivity of qsar models: How to evaluate it comparison of different validation criteria and proposal of using the concordance correlation coefficient
    • Chirico N, Gramatica P. 2011. Real external predictivity of qsar models: how to evaluate it comparison of different validation criteria and proposal of using the concordance correlation coefficient. J Chem Inform Model 51:2320-35.
    • (2011) J Chem Inform Model , vol.51 , pp. 2320-2335
    • Chirico, N.1    Gramatica, P.2
  • 16
    • 0012959393 scopus 로고    scopus 로고
    • Use of QSARS in international decision-making frameworks to predict ecologic effects and environmental fate of chemical substances
    • Cronin MT, Walker JD, Jaworska JS, Comber MH, Watts CD, Worth AP. 2003b. Use of QSARS in international decision-making frameworks to predict ecologic effects and environmental fate of chemical substances. Environ Health Perspect 111:1376.
    • (2003) Environ Health Perspect , vol.111 , pp. 1376
    • Cronin, M.T.1    Walker, J.D.2    Jaworska, J.S.3    Comber, M.H.4    Watts, C.D.5    Worth, A.P.6
  • 17
    • 33645923096 scopus 로고    scopus 로고
    • Computational methods in developing quantitative structure-activity relationships (QSAR): A review
    • Dudek AZ, Arodz T, Galvez J. 2006. Computational methods in developing quantitative structure-activity relationships (QSAR): A review. Comb Chem High Throughput Screen 9:213-28.
    • (2006) Comb Chem High Throughput Screen , vol.9 , pp. 213-228
    • Dudek, A.Z.1    Arodz, T.2    Galvez, J.3
  • 18
    • 34447503921 scopus 로고    scopus 로고
    • Glossary of terms used in toxicology, (IUPAC recommendations 2007)
    • Duffus JH, Nordberg M, Templeton DM. 2007. Glossary of terms used in toxicology, (IUPAC recommendations 2007). Pure Appl Chem 79: 1153-344.
    • (2007) Pure Appl Chem , vol.79 , pp. 1153-1344
    • Duffus, J.H.1    Nordberg, M.2    Templeton, D.M.3
  • 20
    • 33746256595 scopus 로고    scopus 로고
    • Megavariate analysis of environmental qsar data. Part I-A basic framework founded on principal component analysis (PCA), partial least squares (PLS), and statistical molecular design (SMD)
    • Eriksson L, Andersson PL, Johansson E, Tysklind M. 2006. Megavariate analysis of environmental qsar data. Part I-A basic framework founded on principal component analysis (PCA), partial least squares (PLS), and statistical molecular design (SMD). Mol Divers 10:169-86.
    • (2006) Mol Divers , vol.10 , pp. 169-186
    • Eriksson, L.1    Andersson, P.L.2    Johansson, E.3    Tysklind, M.4
  • 22
    • 84937868852 scopus 로고    scopus 로고
    • The fitness for purpose of analytical methods. A Laboratory Guide to Method Validation and Related Topics
    • Eurachem. Accessed on 23 August 2014
    • Eurachem. 1998. The Fitness for Purpose of Analytical Methods. A Laboratory Guide To Method Validation And Related Topics. Eurachem. Available at: http://www. eurachem. org/index. php/publications/ guides/mv. Accessed on 23 August 2014.
    • (1998) Eurachem
  • 23
    • 84937868478 scopus 로고    scopus 로고
    • Eu extends ban on animal-tested cosmetics
    • Euronews. Accessed on 23 August 2014
    • Euronews. 2013. Eu Extends Ban On Animal-Tested Cosmetics. Euronews. Available at: http://www. euronews. com/2013/03/11/euextends-ban-on-animal-tested-cosmetics/. Accessed on 23 August 2014.
    • (2013) Euronews
  • 25
    • 0032458753 scopus 로고    scopus 로고
    • Computational neural networks: A new paradigm for spatial analysis
    • Fischer M. 1997. Computational neural networks: A new paradigm for spatial analysis. Environ Plann A 30:1873-91.
    • (1997) Environ Plann A , vol.30 , pp. 1873-1891
    • Fischer, M.1
  • 26
    • 36549089078 scopus 로고    scopus 로고
    • Categorization framework to aid hazard identification of nanomaterials
    • Foss Hansen S, Larsen BH, Olsen SI, Baun A. 2007. Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology 1:243-50.
    • (2007) Nanotoxicology , vol.1 , pp. 243-250
    • Foss Hansen, S.1    Larsen, B.H.2    Olsen, S.I.3    Baun, A.4
  • 28
    • 79952333743 scopus 로고    scopus 로고
    • Exploring quantitative nanostructure-activity relationships (QNAR) modeling as a tool for predicting biological effects of manufactured nanoparticles
    • Fourches D, Pu D, Tropsha A. 2011. Exploring quantitative nanostructure-activity relationships (QNAR) modeling as a tool for predicting biological effects of manufactured nanoparticles. Comb Chem High T Scr 14:217-25.
    • (2011) Comb Chem High T Scr , vol.14 , pp. 217-225
    • Fourches, D.1    Pu, D.2    Tropsha, A.3
  • 31
    • 84865148453 scopus 로고    scopus 로고
    • Modeling the cellular uptake of magnetofluorescent nanoparticles in pancreatic cancer cells: A quantitative structure activity relationship study
    • Ghorbanzadeh M, Fatemi MH, Karimpour M. 2012. Modeling the cellular uptake of magnetofluorescent nanoparticles in pancreatic cancer cells: A quantitative structure activity relationship study. Ind Eng Chem Res 51:10712-18.
    • (2012) Ind Eng Chem Res , vol.51 , pp. 10712-10718
    • Ghorbanzadeh, M.1    Fatemi, M.H.2    Karimpour, M.3
  • 32
    • 34547604210 scopus 로고    scopus 로고
    • Anisotropy of building blocks and their assembly into complex structures
    • Glotzer SC, Solomon MJ. 2007. Anisotropy of building blocks and their assembly into complex structures. Nat Mater 6:557-62.
    • (2007) Nat Mater , vol.6 , pp. 557-562
    • Glotzer, S.C.1    Solomon, M.J.2
  • 36
    • 34548276584 scopus 로고    scopus 로고
    • Non-testing in reach
    • Gubbels-Van Hal I. 2007. Non-testing in reach? Chim Oggi 25:14-16.
    • (2007) Chim Oggi , vol.25 , pp. 14-16
    • Gubbels-Van Hal, I.1
  • 37
    • 20444409456 scopus 로고    scopus 로고
    • Interpreting computational neural network QSAR models: A measure of descriptor importance
    • Guha R, Jurs PC. 2005. Interpreting computational neural network QSAR models: A measure of descriptor importance. J Chem Inform Model 45: 800-6.
    • (2005) J Chem Inform Model , vol.45 , pp. 800-806
    • Guha, R.1    Jurs, P.C.2
  • 38
    • 84879797130 scopus 로고    scopus 로고
    • A large-scale empirical evaluation of cross-validation and external test set validation in (Q)SAR
    • Gütlein M, Helma C, Karwath A, Kramer S. 2013. A large-scale empirical evaluation of cross-validation and external test set validation in (Q)SAR. Mol Info 32:516-28.
    • (2013) Mol Info , vol.32 , pp. 516-528
    • Gütlein, M.1    Helma, C.2    Karwath, A.3    Kramer, S.4
  • 39
    • 80051771039 scopus 로고    scopus 로고
    • Improving the interferences of methyl thiazolyl tetrazolium and IL-8 assays in assessing the cytotoxicity of nanoparticles
    • Hsiao I-L, Huang Y-J. 2011. Improving the interferences of methyl thiazolyl tetrazolium and IL-8 assays in assessing the cytotoxicity of nanoparticles. J Nanosci Nanotechnol 11:5228-33.
    • (2011) J Nanosci Nanotechnol , vol.11 , pp. 5228-5233
    • Hsiao, I.-L.1    Huang, Y.-J.2
  • 40
    • 0142038387 scopus 로고    scopus 로고
    • The application of structure-activity relationships in human hazard assessment: A first approach
    • Bilthoven, the Netherlands.
    • Hulzebos E, Janssen P, Maslankiewicz L, Meijerink M, Muller J, Pelgrom S, et al. 2001. The application of structure-activity relationships in human hazard assessment: A first approach. RIVM report 601516008, Bilthoven, the Netherlands.
    • (2001) RIVM Report 601516008
    • Hulzebos, E.1    Janssen, P.2    Maslankiewicz, L.3    Meijerink, M.4    Muller, J.5    Pelgrom, S.6
  • 41
    • 0012906771 scopus 로고    scopus 로고
    • Summary of a workshop on regulatory acceptance of (Q)SARS for human health and environmental endpoints
    • Jaworska JS, Comber M, Auer C, Van Leeuwen C. 2003. Summary of a workshop on regulatory acceptance of (Q)SARS for human health and environmental endpoints. Environ Health Perspect 111:1358.
    • (2003) Environ Health Perspect , vol.111 , pp. 1358
    • Jaworska, J.S.1    Comber, M.2    Auer, C.3    Van Leeuwen, C.4
  • 42
    • 84871346842 scopus 로고    scopus 로고
    • Engineered nanomaterial risk. Lessons learnt from completed nanotoxicology studies: Potential solutions to current and future challenges
    • Johnston H, Pojana G, Zuin S, Jacobsen NR, Møller P, Loft S, et al. 2013. Engineered nanomaterial risk. lessons learnt from completed nanotoxicology studies: potential solutions to current and future challenges. Crit Rev Toxicol 43:1-20.
    • (2013) Crit Rev Toxicol , vol.43 , pp. 1-20
    • Johnston, H.1    Pojana, G.2    Zuin, S.3    Jacobsen, N.R.4    Mller, P.5    Loft, S.6
  • 43
    • 84893788216 scopus 로고    scopus 로고
    • Nano-quantitative structure-activity relationship modeling using easily computable and interpretable descriptors for uptake of magnetofluorescent engineered nanoparticles in pancreatic cancer cells
    • Kar S, Gajewicz A, Puzyn T, Roy K. 2014. Nano-quantitative structure-activity relationship modeling using easily computable and interpretable descriptors for uptake of magnetofluorescent engineered nanoparticles in pancreatic cancer cells. Toxicol In Vitro 28:600-6.
    • (2014) Toxicol in Vitro , vol.28 , pp. 600-606
    • Kar, S.1    Gajewicz, A.2    Puzyn, T.3    Roy, K.4
  • 46
    • 40949093153 scopus 로고    scopus 로고
    • The use of (Q)SAR methods in the context of reach
    • Lahl U, Gundert-Remy U. 2008. The use of (Q)SAR methods in the context of reach. Toxicol Mechan Method 18:149-58.
    • (2008) Toxicol Mechan Method , vol.18 , pp. 149-158
    • Lahl, U.1    Gundert-Remy, U.2
  • 47
    • 67650330246 scopus 로고    scopus 로고
    • Molecular determinants of juvenile hormone action as revealed by 3D QSAR analysis in Drosophila
    • Liszeková D, Polakovicová M, Beno M, Farkas R. 2009. Molecular determinants of juvenile hormone action as revealed by 3D QSAR analysis in Drosophila. PLoS One 4:E6001.
    • (2009) PLoS One , vol.4 , pp. E6001
    • Liszeková, D.1    Polakovicová, M.2    Beno, M.3    Farkas, R.4
  • 48
    • 79954561104 scopus 로고    scopus 로고
    • Classification nanosar development for cytotoxicity of metal oxide nanoparticles
    • Liu R, Rallo R, George S, Ji Z, Nair S, Nel AE, Cohen Y. 2011. Classification nanosar development for cytotoxicity of metal oxide nanoparticles. Small 7:1118-26.
    • (2011) Small , vol.7 , pp. 1118-1126
    • Liu, R.1    Rallo, R.2    George, S.3    Ji, Z.4    Nair, S.5    Nel, A.E.6    Cohen, Y.7
  • 49
    • 84878041827 scopus 로고    scopus 로고
    • Nanosar development for bioactivity of nanoparticles with considerations of decision boundaries
    • Liu R, Rallo R, Weissleder R, Tassa C, Shaw S, Cohen Y. 2013a. Nanosar development for bioactivity of nanoparticles with considerations of decision boundaries. Small 9:1842-52.
    • (2013) Small , vol.9 , pp. 1842-1852
    • Liu, R.1    Rallo, R.2    Weissleder, R.3    Tassa, C.4    Shaw, S.5    Cohen, Y.6
  • 51
    • 84937901600 scopus 로고    scopus 로고
    • Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
    • Lowe MF, Mccall D. 2009. Globally Harmonized System of Classification and Labelling of Chemicals (GHS). Arlington: US Environmental Agency.
    • (2009) Arlington: US Environmental Agency
    • Lowe, M.F.1    Mccall, D.2
  • 52
    • 84890016656 scopus 로고    scopus 로고
    • Evaluation criteria for the quality of published experimental data on nanomaterials and their usefulness for QSAR modelling
    • Lubinski L, Urbaszek P, Gajewicz A, Cronin M, Enoch S, Madden J, et al. 2013. Evaluation criteria for the quality of published experimental data on nanomaterials and their usefulness for QSAR modelling. SAR QSAR Environ Res 24:995-1008.
    • (2013) SAR QSAR Environ Res , vol.24 , pp. 995-1008
    • Lubinski, L.1    Urbaszek, P.2    Gajewicz, A.3    Cronin, M.4    Enoch, S.5    Madden, J.6
  • 53
    • 84876578435 scopus 로고    scopus 로고
    • Quantitative structure-activity relationship models for ready biodegradability of chemicals
    • Mansouri K, Ringsted T, Ballabio D, Todeschini R, Consonni V. 2013. Quantitative structure-activity relationship models for ready biodegradability of chemicals. J Chem Info Model 53:867-78.
    • (2013) J Chem Info Model , vol.53 , pp. 867-878
    • Mansouri, K.1    Ringsted, T.2    Ballabio, D.3    Todeschini, R.4    Consonni, V.5
  • 54
    • 37449006161 scopus 로고    scopus 로고
    • Structure-activity relationship analysis tools: Validation and applicability in predicting carcinogens
    • Mayer J, Cheeseman M, Twaroski M. 2008. Structure-activity relationship analysis tools: validation and applicability in predicting carcinogens. Regul Toxicol Pharmacol 50:50-8.
    • (2008) Regul Toxicol Pharmacol , vol.50 , pp. 50-58
    • Mayer, J.1    Cheeseman, M.2    Twaroski, M.3
  • 55
    • 84871157124 scopus 로고    scopus 로고
    • Use and perceived benefits and barriers of QSAR models for reach: Findings from a questionnaire to stakeholders
    • Mays C, Benfenati E, Pardoe S. 2012. Use and perceived benefits and barriers of QSAR models for reach: findings from a questionnaire to stakeholders. Chem Cent J 6:1-9.
    • (2012) Chem Cent J , vol.6 , pp. 1-9
    • Mays, C.1    Benfenati, E.2    Pardoe, S.3
  • 58
    • 18244367106 scopus 로고    scopus 로고
    • Pops: A QSAR system for developing categories for persistent, bioacculative and toxic chemicals and their metabolites
    • Mekenyan O, Dimitrov S, Pavlov T, Veith G. 2005. Pops: A QSAR system for developing categories for persistent, bioacculative and toxic chemicals and their metabolites. SAR QSAR Env Res 16:103-33.
    • (2005) SAR QSAR Env Res , vol.16 , pp. 103-133
    • Mekenyan, O.1    Dimitrov, S.2    Pavlov, T.3    Veith, G.4
  • 60
    • 38149135806 scopus 로고    scopus 로고
    • Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique
    • Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. 2008. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239-53.
    • (2008) Toxicol Sci , vol.101 , pp. 239-253
    • Murdock, R.C.1    Braydich-Stolle, L.2    Schrand, A.M.3    Schlager, J.J.4    Hussain, S.M.5
  • 62
    • 84890354341 scopus 로고    scopus 로고
    • Noninvasive determination of cellular oxygen consumption as novel cytotoxicity assay for nanomaterials
    • Neumeyer A, Bukowski M, Veith M, Lehr C-M, Daum N. 2014. Noninvasive determination of cellular oxygen consumption as novel cytotoxicity assay for nanomaterials. Nanotoxicology 8:50-60.
    • (2014) Nanotoxicology , vol.8 , pp. 50-60
    • Neumeyer, A.1    Bukowski, M.2    Veith, M.3    Lehr, C.-M.4    Daum, N.5
  • 65
    • 72149108274 scopus 로고    scopus 로고
    • OECD. Series on Testing and Assessment, No. 80
    • OECD. 2007b. Guidance on the grouping of chemicals. Series on Testing and Assessment, No. 80.
    • (2007) Guidance on the Grouping of Chemicals
  • 66
    • 84899647322 scopus 로고    scopus 로고
    • Nanoinformatics: Emerging databases and available tools
    • Panneerselvam S, Choi S. 2014. Nanoinformatics: emerging databases and available tools. Int J Mol Sci 15:7158-82.
    • (2014) Int J Mol Sci , vol.15 , pp. 7158-7182
    • Panneerselvam, S.1    Choi, S.2
  • 67
    • 84890823294 scopus 로고    scopus 로고
    • Using experimental data of Escherichia coli to develop a QSAR model for predicting the photo-induced cytotoxicity of metal oxide nanoparticles
    • Pathakoti K, Huang M-J, Watts JD, He X, Hwang H-M. 2014. Using experimental data of Escherichia coli to develop a QSAR model for predicting the photo-induced cytotoxicity of metal oxide nanoparticles. J Photochem Photobiol B 130:234-40.
    • (2014) J Photochem Photobiol B , vol.130 , pp. 234-240
    • Pathakoti, K.1    Huang, M.-J.2    Watts, J.D.3    He, X.4    Hwang, H.-M.5
  • 70
    • 79952602472 scopus 로고    scopus 로고
    • Non-testing approaches under reach-help or hindrance Perspectives from a practitioner within industry
    • Patlewicz G, Chen M, Bellin, C. 2011. Non-testing approaches under reach-help or hindrance Perspectives from a practitioner within industry. SAR QSAR Environ Res 22:67-88.
    • (2011) SAR QSAR Environ Res , vol.22 , pp. 67-88
    • Patlewicz, G.1    Chen, M.2    Bellin, C.3
  • 71
    • 72149108995 scopus 로고    scopus 로고
    • Mechanism-based categorization of aromatase inhibitors: A potential discovery and screening tool
    • Petkov P, Temelkov S, Villeneuve D, Ankley G, Mekenyan O. 2009. Mechanism-based categorization of aromatase inhibitors: A potential discovery and screening tool. SAR QSAR Environ Res 20:657-78.
    • (2009) SAR QSAR Environ Res , vol.20 , pp. 657-678
    • Petkov, P.1    Temelkov, S.2    Villeneuve, D.3    Ankley, G.4    Mekenyan, O.5
  • 73
    • 73349083717 scopus 로고    scopus 로고
    • Toward the development of ''nano-QSARS'': Advances and challenges
    • Puzyn T, Leszczynska D, Leszczynski J. 2009. Toward the development of ''nano-QSARS'': Advances and challenges. Small 5:2494-509.
    • (2009) Small , vol.5 , pp. 2494-2509
    • Puzyn, T.1    Leszczynska, D.2    Leszczynski, J.3
  • 75
    • 84937895421 scopus 로고    scopus 로고
    • Toxicity of nanomaterials: Availability and suitability of data for the development of in silico models
    • Richarz AN, Cronin M, Madden J, Lubinski L, Mokshina E, Urbaszek P, et al. 2013. Toxicity of nanomaterials: Availability and suitability of data for the development of in silico models. Toxicol Lett 221:S246.
    • (2013) Toxicol Lett , vol.221 , pp. S246
    • Richarz, A.N.1    Cronin, M.2    Madden, J.3    Lubinski, L.4    Mokshina, E.5    Urbaszek, P.6
  • 76
    • 17444377907 scopus 로고    scopus 로고
    • Societal implications of nanoscience and nanotechnology: Maximizing human benefit
    • Roco MC, Bainbridge WS. 2005. Societal implications of nanoscience and nanotechnology: maximizing human benefit. J Nanopart Res 7: 1-13.
    • (2005) J Nanopart Res , vol.7 , pp. 1-13
    • Roco, M.C.1    Bainbridge, W.S.2
  • 77
    • 84873050306 scopus 로고    scopus 로고
    • Dependence of QSAR models on the selection of trial descriptor sets: A demonstration using nanotoxicity endpoints of decorated nanotubes
    • Shao C-Y, Chen S-Z, Su B-H, Tseng YJ, Esposito EX, Hopfinger AJ. 2013. Dependence of QSAR models on the selection of trial descriptor sets: A demonstration using nanotoxicity endpoints of decorated nanotubes. J Chem Info Model 53:142-58.
    • (2013) J Chem Info Model , vol.53 , pp. 142-158
    • Shao, C.-Y.1    Chen, S.-Z.2    Su, B.-H.3    Tseng, Y.J.4    Esposito, E.X.5    Hopfinger, A.J.6
  • 78
    • 84896359897 scopus 로고    scopus 로고
    • Nano-QSAR modeling for predicting biological activity of diverse nanomaterials
    • Singh KP, Gupta S. 2014. Nano-QSAR modeling for predicting biological activity of diverse nanomaterials. Rsc Adv 4:13215-30.
    • (2014) Rsc Adv , vol.4 , pp. 13215-13230
    • Singh, K.P.1    Gupta, S.2
  • 79
    • 77952976369 scopus 로고    scopus 로고
    • Nanomaterials for environmental studies: Classification, reference material issues, and strategies for physicochemical characterisation
    • Stone V, Nowack B, Baun A, Van Den Brink N, Von Der Kammer F, Dusinska M, et al. 2010. Nanomaterials for environmental studies: classification, reference material issues, and strategies for physicochemical characterisation. Sci Total Environ 408:1745-54.
    • (2010) Sci Total Environ , vol.408 , pp. 1745-1754
    • Stone, V.1    Nowack, B.2    Baun, A.3    Van Den Brink, N.4    Von Der Kammer, F.5    Dusinska, M.6
  • 80
    • 0042768071 scopus 로고    scopus 로고
    • Decision tree sar models for developmental toxicity based on an FDA/TERIS database
    • Sussman N, Arena V, Yu S, Mazumdar S, Thampatty B. 2003. Decision tree sar models for developmental toxicity based on an FDA/TERIS database. SAR QSAR Environ Res 14:83-96.
    • (2003) SAR QSAR Environ Res , vol.14 , pp. 83-96
    • Sussman, N.1    Arena, V.2    Yu, S.3    Mazumdar, S.4    Thampatty, B.5
  • 82
    • 79959688079 scopus 로고    scopus 로고
    • Exploring an ecotoxicity database with the OECD (Q)SAR toolbox and dragon descriptors in order to prioritise testing on algae, daphnids, and fish
    • Tebby C, Mombelli E, Pandard P, Péry AR. 2011. Exploring an ecotoxicity database with the OECD (Q)SAR toolbox and dragon descriptors in order to prioritise testing on algae, daphnids, and fish. Sci Total Environ 409:3334-43.
    • (2011) Sci Total Environ , vol.409 , pp. 3334-3343
    • Tebby, C.1    Mombelli, E.2    Pandard, P.3    Péry, A.R.4
  • 87
    • 84890322405 scopus 로고    scopus 로고
    • Principal component and causal analysis of structural and acute in vitro toxicity data for nanoparticles
    • Wang XZ, Yang Y, Li RF, Mcguinnes C, Adamson J, Megson IL, Donaldson K. 2013. Principal component and causal analysis of structural and acute in vitro toxicity data for nanoparticles. Nanotoxicology 8:465-76.
    • (2013) Nanotoxicology , vol.8 , pp. 465-476
    • Wang, X.Z.1    Yang, Y.2    Li, R.F.3    Mcguinnes, C.4    Adamson, J.5    Megson, I.L.6    Donaldson, K.7
  • 88
    • 12044254082 scopus 로고
    • Prediction of reduced ion mobility constants from structural information using multiple linear regression analysis and computational neural networks
    • Wessel MD, Jurs PC. 1994. Prediction of reduced ion mobility constants from structural information using multiple linear regression analysis and computational neural networks. Anal Chem 66:2480-7.
    • (1994) Anal Chem , vol.66 , pp. 2480-2487
    • Wessel, M.D.1    Jurs, P.C.2
  • 89
    • 0036368719 scopus 로고    scopus 로고
    • Application of neural networks to large dataset qsar, virtual screening, and library design
    • Winkler DA, Burden FR. 2002. Application of neural networks to large dataset qsar, virtual screening, and library design. Combinatorial Library, 325-67.
    • (2002) Combinatorial Library , pp. 325-367
    • Winkler, D.A.1    Burden, F.R.2
  • 90
    • 84885757504 scopus 로고    scopus 로고
    • Applying quantitative structure-activity relationship approaches to nanotoxicology: Current status and future potential
    • Winkler DA, Mombelli E, Pietroiusti A, Tran L, Worth A, Fadeel B, Mccall MJ. 2012. Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential. Toxicology 313:15-23.
    • (2012) Toxicology , vol.313 , pp. 15-23
    • Winkler, D.A.1    Mombelli, E.2    Pietroiusti, A.3    Tran, L.4    Worth, A.5    Fadeel, B.6    Mccall, M.J.7
  • 91
    • 4043071270 scopus 로고    scopus 로고
    • Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression
    • Yao X, Panaye A, Doucet J-P, Zhang R, Chen H, Liu M, et al. 2004. Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. J Chem Inform Comput Sci 44:1257-66.
    • (2004) J Chem Inform Comput Sci , vol.44 , pp. 1257-1266
    • Yao, X.1    Panaye, A.2    Doucet, J.-P.3    Zhang, R.4    Chen, H.5    Liu, M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.