-
1
-
-
80455149950
-
Environmental, health and safety issues: Nanoparticles in the real world
-
M. J. McCall Environmental, health and safety issues: nanoparticles in the real world Nat. Nanotechnol. 2011 6 613 614
-
(2011)
Nat. Nanotechnol.
, vol.6
, pp. 613-614
-
-
McCall, M.J.1
-
2
-
-
77955731275
-
Using Machine Learning Methods to Predict Experimental High Throughput Screening Data
-
C. Mballo V. Makarenkov Using Machine Learning Methods to Predict Experimental High Throughput Screening Data Comb. Chem. High Throughput Screening 2010 13 430 441
-
(2010)
Comb. Chem. High Throughput Screening
, vol.13
, pp. 430-441
-
-
Mballo, C.1
Makarenkov, V.2
-
3
-
-
77953679349
-
Computational strategies for predicting the potential risks associated with nanotechnology
-
A. S. Barnard Computational strategies for predicting the potential risks associated with nanotechnology Nanoscale 2009 1 89 95
-
(2009)
Nanoscale
, vol.1
, pp. 89-95
-
-
Barnard, A.S.1
-
4
-
-
77957232531
-
-
Springer, Dordrecht, New York
-
T. Puzyn, J. Leszczynski and M. T. D. Cronin, Recent Advances in QSAR Studies: methods and applications, Springer, Dordrecht, New York, 2010
-
(2010)
Recent Advances in QSAR Studies: Methods and Applications
-
-
Puzyn, T.1
Leszczynski, J.2
Cronin, M.T.D.3
-
5
-
-
73349083717
-
Toward the development of nano-QSARs: Advances and challenges
-
T. Puzyn D. Leszczynska J. Leszczynski Toward the development of "nano-QSARs": advances and challenges Small 2009 5 2494 2509
-
(2009)
Small
, vol.5
, pp. 2494-2509
-
-
Puzyn, T.1
Leszczynska, D.2
Leszczynski, J.3
-
7
-
-
79952697349
-
Predictive models for nanotoxicology: Current challenges and future opportunities
-
K. A. Clark R. H. White E. K. Silbergeld Predictive models for nanotoxicology: current challenges and future opportunities Regul. Toxicol. Pharmacol. 2011 59 361 363
-
(2011)
Regul. Toxicol. Pharmacol.
, vol.59
, pp. 361-363
-
-
Clark, K.A.1
White, R.H.2
Silbergeld, E.K.3
-
8
-
-
79952485164
-
Data flow modeling, data mining and QSAR in high-throughput discovery of functional nanomaterials
-
X. Z. Wang Y. Y. Yang T. A. Lin X. L. Weng J. A. Darr Data flow modeling, data mining and QSAR in high-throughput discovery of functional nanomaterials Comput. Chem. Eng. 2011 35 671 678
-
(2011)
Comput. Chem. Eng.
, vol.35
, pp. 671-678
-
-
Wang, X.Z.1
Yang, Y.Y.2
Lin, T.A.3
Weng, X.L.4
Darr, J.A.5
-
9
-
-
84855763277
-
Construction of coherent nano quantitative structure-properties relationships (nano-QSPR) models and catastrophe theory
-
R. Carbo-Dorca E. Besalu Construction of coherent nano quantitative structure-properties relationships (nano-QSPR) models and catastrophe theory SAR QSAR Environ. Res. 2011 22 661 665
-
(2011)
SAR QSAR Environ. Res.
, vol.22
, pp. 661-665
-
-
Carbo-Dorca, R.1
Besalu, E.2
-
10
-
-
84875346892
-
Silico Analysis of Nanomaterials Hazard and Risk
-
Y. Cohen R. Rallo R. Liu H. Liu Silico Analysis of Nanomaterials Hazard and Risk Acc. Chem. Res. 2013 46 802 812
-
(2013)
Acc. Chem. Res.
, vol.46
, pp. 802-812
-
-
Cohen, Y.1
Rallo, R.2
Liu, R.3
Liu, H.4
-
11
-
-
84869164498
-
Modeling biological activities of nanoparticles
-
V. C. Epa et al. Modeling biological activities of nanoparticles Nano Lett. 2012 12 5808 5812
-
(2012)
Nano Lett.
, vol.12
, pp. 5808-5812
-
-
Epa, V.C.1
-
12
-
-
84873718392
-
Physicochemical Properties Determine Nanomaterial Cellular Uptake, Transport, and Fate
-
M. Zhu et al. Physicochemical Properties Determine Nanomaterial Cellular Uptake, Transport, and Fate Acc. Chem. Res. 2013 46 622 631
-
(2013)
Acc. Chem. Res.
, vol.46
, pp. 622-631
-
-
Zhu, M.1
-
13
-
-
78349253077
-
Comparative Study of Predictive Computational Models for Nanoparticle-Induced Cytotoxicity
-
C. Sayes I. Ivanov Comparative Study of Predictive Computational Models for Nanoparticle-Induced Cytotoxicity Risk Anal. 2010 30 1723 1734
-
(2010)
Risk Anal.
, vol.30
, pp. 1723-1734
-
-
Sayes, C.1
Ivanov, I.2
-
14
-
-
78049334073
-
Quantitative nanostructure-activity relationship modeling
-
D. Fourches et al. Quantitative nanostructure-activity relationship modeling ACS Nano 2010 4 5703 5712
-
(2010)
ACS Nano
, vol.4
, pp. 5703-5712
-
-
Fourches, D.1
-
15
-
-
79952372146
-
Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles
-
T. Puzyn et al. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles Nat. Nanotechnol. 2011 6 175 178
-
(2011)
Nat. Nanotechnol.
, vol.6
, pp. 175-178
-
-
Puzyn, T.1
-
16
-
-
79954561104
-
Classification NanoSAR Development for Cytotoxicity of Metal Oxide Nanoparticles
-
R. Liu et al. Classification NanoSAR Development for Cytotoxicity of Metal Oxide Nanoparticles Small 2011 7 1118 1126
-
(2011)
Small
, vol.7
, pp. 1118-1126
-
-
Liu, R.1
-
17
-
-
84878041827
-
Nano-SAR Development for Bioactivity of Nanoparticles with Considerations of Decision Boundaries
-
10.1002/smll.201201903
-
R. Liu et al. Nano-SAR Development for Bioactivity of Nanoparticles with Considerations of Decision Boundaries Small 2012 10.1002/smll.201201903
-
(2012)
Small
-
-
Liu, R.1
-
18
-
-
84878723671
-
-
in, ed. C. Kumar, Wiley-VCH, 3-54
-
L. F. Deravi, J. D. Swartz and D. W. Wright, in Nanostructured Oxides, ed., C. Kumar, Wiley-VCH, 2009, pp. 3-54
-
(2009)
Nanostructured Oxides
-
-
Deravi, L.F.1
Swartz, J.D.2
Wright, D.W.3
-
19
-
-
84862846212
-
Use of Metal Oxide Nanoparticle Band Gap to Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation
-
H. Zhang et al. Use of Metal Oxide Nanoparticle Band Gap To Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation ACS Nano 2012 6 4349 4368
-
(2012)
ACS Nano
, vol.6
, pp. 4349-4368
-
-
Zhang, H.1
-
21
-
-
34547809341
-
A new method with flexible and balanced control of false negatives and false positives for hit selection in RNA interference high-throughput screening assays
-
X. D. Zhang A new method with flexible and balanced control of false negatives and false positives for hit selection in RNA interference high-throughput screening assays J. Biomol. Screening 2007 12 645 655
-
(2007)
J. Biomol. Screening
, vol.12
, pp. 645-655
-
-
Zhang, X.D.1
-
22
-
-
78650678315
-
What is Strong Correlation?
-
M. Kozak What is Strong Correlation? Teach. Stat. 2009 31 85 86
-
(2009)
Teach. Stat.
, vol.31
, pp. 85-86
-
-
Kozak, M.1
-
23
-
-
79951650762
-
Self-Organizing Map Analysis of Toxicity-Related Cell Signaling Pathways for Metal and Metal Oxide Nanoparticles
-
R. Rallo et al. Self-Organizing Map Analysis of Toxicity-Related Cell Signaling Pathways for Metal and Metal Oxide Nanoparticles Environ. Sci. Technol. 2011 45 1695 1702
-
(2011)
Environ. Sci. Technol.
, vol.45
, pp. 1695-1702
-
-
Rallo, R.1
-
24
-
-
56049106549
-
Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties
-
T. Xia et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties ACS Nano 2008 2 2121 2134
-
(2008)
ACS Nano
, vol.2
, pp. 2121-2134
-
-
Xia, T.1
-
27
-
-
34250217766
-
Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress
-
L. K. Limbach et al. Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress Environ. Sci. Technol. 2007 41 4158 4163
-
(2007)
Environ. Sci. Technol.
, vol.41
, pp. 4158-4163
-
-
Limbach, L.K.1
-
28
-
-
84872378289
-
Chromium(iii) oxide nanoparticles induced remarkable oxidative stress and apoptosis on culture cells
-
M. Horie et al. Chromium(iii) oxide nanoparticles induced remarkable oxidative stress and apoptosis on culture cells Environ. Toxicol. 2012 28 61 75
-
(2012)
Environ. Toxicol.
, vol.28
, pp. 61-75
-
-
Horie, M.1
-
29
-
-
70349399043
-
Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells
-
B. Fahmy S. A. Cormier Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells Toxicol. in Vitro 2009 23 1365 1371
-
(2009)
Toxicol. in Vitro
, vol.23
, pp. 1365-1371
-
-
Fahmy, B.1
Cormier, S.A.2
-
30
-
-
70449397944
-
Nanotechnology-derived materials: Potential risk in preparation and use
-
G. Andreev V. Minashkin I. Nevskii A. Putilov Nanotechnology-derived materials: potential risk in preparation and use Russ. J. Gen. Chem. 2009 79 1974 1981
-
(2009)
Russ. J. Gen. Chem.
, vol.79
, pp. 1974-1981
-
-
Andreev, G.1
Minashkin, V.2
Nevskii, I.3
Putilov, A.4
-
31
-
-
77952283597
-
Toward a unified approach to dose-response modeling in ecotoxicology
-
C. Ritz Toward a unified approach to dose-response modeling in ecotoxicology Environ. Toxicol. Chem. 2010 29 220 229
-
(2010)
Environ. Toxicol. Chem.
, vol.29
, pp. 220-229
-
-
Ritz, C.1
-
32
-
-
44949134935
-
Perturbational profiling of nanomaterial biologic activity
-
S. Y. Shaw et al. Perturbational profiling of nanomaterial biologic activity Proc. Natl. Acad. Sci. U. S. A. 2008 105 7387 7392
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 7387-7392
-
-
Shaw, S.Y.1
-
33
-
-
0037923585
-
Quantitative cationic-activity relationships for predicting toxicity of metals
-
J. D. Walker M. Enache J. C. Dearden Quantitative cationic-activity relationships for predicting toxicity of metals Environ. Toxicol. Chem. 2003 22 1916 1935
-
(2003)
Environ. Toxicol. Chem.
, vol.22
, pp. 1916-1935
-
-
Walker, J.D.1
Enache, M.2
Dearden, J.C.3
-
36
-
-
79957797236
-
A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles
-
E. Burello A. P. Worth A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles Nanotoxicology 2011 5 228 235
-
(2011)
Nanotoxicology
, vol.5
, pp. 228-235
-
-
Burello, E.1
Worth, A.P.2
-
41
-
-
78149473669
-
-
in, 3121-3124
-
K. H. Brodersen, O. Cheng Soon, K. E. Stephan and J. M. Buhmann, in 20th International Conference on Pattern Recognition, 2010, pp. 3121-3124
-
(2010)
20th International Conference on Pattern Recognition
-
-
Brodersen, K.H.1
Cheng Soon, O.2
Stephan, K.E.3
Buhmann, J.M.4
-
42
-
-
1342330535
-
Is cross-validation valid for small-sample microarray classification?
-
U. M. Braga-Neto E. R. Dougherty Is cross-validation valid for small-sample microarray classification? Bioinformatics 2004 20 374 380
-
(2004)
Bioinformatics
, vol.20
, pp. 374-380
-
-
Braga-Neto, U.M.1
Dougherty, E.R.2
-
43
-
-
84950461478
-
Estimating the Error Rate of a Prediction Rule-Improvement on Cross-Validation
-
B. Efron Estimating the Error Rate of a Prediction Rule-Improvement on Cross-Validation J. Am. Stat. Assoc. 1983 78 316 331
-
(1983)
J. Am. Stat. Assoc.
, vol.78
, pp. 316-331
-
-
Efron, B.1
-
45
-
-
0033068974
-
Relevance of reactivity determinants to exposure assessment and biological monitoring of the elements
-
E. Nieboer G. G. Fletcher Y. Thomassen Relevance of reactivity determinants to exposure assessment and biological monitoring of the elements J. Environ. Monit. 1999 1 1 14
-
(1999)
J. Environ. Monit.
, vol.1
, pp. 1-14
-
-
Nieboer, E.1
Fletcher, G.G.2
Thomassen, Y.3
-
46
-
-
31944451232
-
Toxic potential of materials at the nanolevel
-
A. Nel T. Xia L. Madler N. Li Toxic potential of materials at the nanolevel Science 2006 311 622 627
-
(2006)
Science
, vol.311
, pp. 622-627
-
-
Nel, A.1
Xia, T.2
Madler, L.3
Li, N.4
-
47
-
-
0032847194
-
Metal toxicity in two rodent species and redox potential: Evaluation of quantitative structure-activity relationships
-
D. F. V. Lewis M. Dobrota M. G. Taylor D. V. Parke Metal toxicity in two rodent species and redox potential: Evaluation of quantitative structure-activity relationships Environ. Toxicol. Chem. 1999 18 2199 2204
-
(1999)
Environ. Toxicol. Chem.
, vol.18
, pp. 2199-2204
-
-
Lewis, D.F.V.1
Dobrota, M.2
Taylor, M.G.3
Parke, D.V.4
-
48
-
-
67649231681
-
Toward a More Realistic QSAR Approach to Predicting Metal Toxicity
-
C. Lepǎdatu M. Enache J. D. Walker Toward a More Realistic QSAR Approach to Predicting Metal Toxicity QSAR Comb. Sci. 2009 28 520 525
-
(2009)
QSAR Comb. Sci.
, vol.28
, pp. 520-525
-
-
Lepǎdatu, C.1
Enache, M.2
Walker, J.D.3
-
49
-
-
78349312273
-
Catch me if you can! Novel aspects of cadmium transport in mammalian cells
-
F. Thevenod Catch me if you can! Novel aspects of cadmium transport in mammalian cells BioMetals 2010 23 857 875
-
(2010)
BioMetals
, vol.23
, pp. 857-875
-
-
Thevenod, F.1
-
50
-
-
21044448353
-
Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships
-
T. I. Netzeva et al. Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships ATLA, Altern. Lab. Anim. 2005 33 155 173
-
(2005)
ATLA, Altern. Lab. Anim.
, vol.33
, pp. 155-173
-
-
Netzeva, T.I.1
-
51
-
-
0032594959
-
An overview of statistical learning theory
-
V. N. Vapnik An overview of statistical learning theory IEEE Trans. Neural Network. 1999 10 988 999
-
(1999)
IEEE Trans. Neural Network.
, vol.10
, pp. 988-999
-
-
Vapnik, V.N.1
-
54
-
-
79956291343
-
Dose-response curve slope is a missing dimension in the analysis of HIV-1 drug resistance
-
M. E. Sampah L. Shen B. L. Jilek R. F. Siliciano Dose-response curve slope is a missing dimension in the analysis of HIV-1 drug resistance Proc. Natl. Acad. Sci. U. S. A. 2011 108 7613 7618
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 7613-7618
-
-
Sampah, M.E.1
Shen, L.2
Jilek, B.L.3
Siliciano, R.F.4
-
57
-
-
2342567014
-
Soft sensing modeling based on support vector machine and Bayesian model selection
-
W. Yan H. Shao X. Wang Soft sensing modeling based on support vector machine and Bayesian model selection Comput. Chem. Eng. 2004 28 1489 1498
-
(2004)
Comput. Chem. Eng.
, vol.28
, pp. 1489-1498
-
-
Yan, W.1
Shao, H.2
Wang, X.3
-
58
-
-
27744590591
-
QSAR applicabilty domain estimation by projection of the training set descriptor space: A review
-
J. Jaworska N. Nikolova-Jeliazkova T. Aldenberg QSAR applicabilty domain estimation by projection of the training set descriptor space: a review ATLA, Altern. Lab. Anim. 2005 33 445 459
-
(2005)
ATLA, Altern. Lab. Anim.
, vol.33
, pp. 445-459
-
-
Jaworska, J.1
Nikolova-Jeliazkova, N.2
Aldenberg, T.3
-
59
-
-
35148898451
-
OECD Guidance document on the validation of (Quantitative) structure-activity relationships [(Q)SAR] models
-
Environment Directorate Organisation for Economic Co-Operation and Development
-
OECD Guidance document on the validation of (Quantitative) structure-activity relationships [(Q)SAR] models, OECD Environment Health and Safety Publications Series on Testing and Assessment, Environment Directorate Organisation for Economic Co-Operation and Development, 2007
-
(2007)
OECD Environment Health and Safety Publications Series on Testing and Assessment
-
-
|