메뉴 건너뛰기




Volumn 3, Issue January, 2014, Pages 2006-2014

QUIC & DIRTY: A quadratic approximation approach for dirty statistical models

Author keywords

[No Author keywords available]

Indexed keywords

INFORMATION SCIENCE;

EID: 84937901319     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (9)

References (29)
  • 1
    • 84872015802 scopus 로고    scopus 로고
    • Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions
    • A. Agarwal, S. Negahban, and M. J. Wainwright. Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions. Annals if Statistics, 40(2):1171-1197, 2012.
    • (2012) Annals If Statistics , vol.40 , Issue.2 , pp. 1171-1197
    • Agarwal, A.1    Negahban, S.2    Wainwright, M.J.3
  • 2
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1):1-122, 2011.
    • (2011) Foundations and Trends in Machine Learning , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 3
    • 84884672748 scopus 로고    scopus 로고
    • Simple bounds for recovering low-complexity models
    • E. Candes and B. Recht. Simple bounds for recovering low-complexity models. Mathemetical Programming, 2012.
    • (2012) Mathemetical Programming
    • Candes, E.1    Recht, B.2
  • 8
    • 84937925595 scopus 로고    scopus 로고
    • A generalization of principal component analysis to the exponential family
    • M. Collins, S. Dasgupta, and R. E. Schapire. A generalization of principal component analysis to the exponential family. In NIPS, 2012.
    • (2012) NIPS
    • Collins, M.1    Dasgupta, S.2    Schapire, R.E.3
  • 10
    • 84877783090 scopus 로고    scopus 로고
    • A divide-and-conquer method for sparse inverse covariance estimation
    • C.-J. Hsieh, I. S. Dhillon, P. Ravikumar, and A. Banerjee. A divide-and-conquer method for sparse inverse covariance estimation. In NIPS, 2012.
    • (2012) NIPS
    • Hsieh, C.-J.1    Dhillon, I.S.2    Ravikumar, P.3    Banerjee, A.4
  • 11
    • 84919790414 scopus 로고    scopus 로고
    • Nuclear norm minimization via active subspace selection
    • C.-J. Hsieh and P. A. Olsen. Nuclear norm minimization via active subspace selection. In ICML, 2014.
    • (2014) ICML
    • Hsieh, C.-J.1    Olsen, P.A.2
  • 12
    • 85162490550 scopus 로고    scopus 로고
    • Sparse inverse covariance matrix estimation using quadratic approximation
    • C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, and P. Ravikumar. Sparse inverse covariance matrix estimation using quadratic approximation. In NIPS, 2011.
    • (2011) NIPS
    • Hsieh, C.-J.1    Sustik, M.A.2    Dhillon, I.S.3    Ravikumar, P.4
  • 14
    • 81255189015 scopus 로고    scopus 로고
    • Robust matrix decomposition with sparse corruptions
    • D. Hsu, S. M. Kakade, and T. Zhang. Robust matrix decomposition with sparse corruptions. IEEE Trans. Inform. Theory, 57:7221-7234, 2011.
    • (2011) IEEE Trans. Inform. Theory , vol.57 , pp. 7221-7234
    • Hsu, D.1    Kakade, S.M.2    Zhang, T.3
  • 16
    • 84877762791 scopus 로고    scopus 로고
    • Proximal Newton-type methods for convex optimization
    • J. D. Lee, Y. Sun, and M. A. Saunders. Proximal Newton-type methods for convex optimization. In NIPS, 2012.
    • (2012) NIPS
    • Lee, J.D.1    Sun, Y.2    Saunders, M.A.3
  • 17
    • 84880972942 scopus 로고    scopus 로고
    • Alternating direction methods for latent variable Gaussian graphical model selection
    • S. Ma, L. Xue, and H. Zou. Alternating direction methods for latent variable Gaussian graphical model selection. Neural Computation, 25(8):2172-2198, 2013.
    • (2013) Neural Computation , vol.25 , Issue.8 , pp. 2172-2198
    • Ma, S.1    Xue, L.2    Zou, H.3
  • 18
    • 84871600478 scopus 로고    scopus 로고
    • A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers
    • S. N. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers. Statistical Science, 27(4):538-557, 2012.
    • (2012) Statistical Science , vol.27 , Issue.4 , pp. 538-557
    • Negahban, S.N.1    Ravikumar, P.2    Wainwright, M.J.3    Yu, B.4
  • 19
    • 84877779852 scopus 로고    scopus 로고
    • Newton-like methods for sparse inverse covariance estimation
    • P. Olsen, F. Oztoprak, J. Nocedal, and S. Rennie. Newton-like methods for sparse inverse covariance estimation. In NIPS, 2012.
    • (2012) NIPS
    • Olsen, P.1    Oztoprak, F.2    Nocedal, J.3    Rennie, S.4
  • 22
    • 85162449444 scopus 로고    scopus 로고
    • Greedy algorithms for structurally constrained high dimensional problems
    • A. Tewari, P. Ravikumar, and I. Dhillon. Greedy algorithms for structurally constrained high dimensional problems. In NIPS, 2011.
    • (2011) NIPS
    • Tewari, A.1    Ravikumar, P.2    Dhillon, I.3
  • 23
    • 81155131299 scopus 로고    scopus 로고
    • A block coordinate gradient descent method for regularized convex separable optimization and covariance selection
    • K.-C. Toh, P. Tseng, and S. Yun. A block coordinate gradient descent method for regularized convex separable optimization and covariance selection. Mathemetical Programming, 129:331-355, 2011.
    • (2011) Mathemetical Programming , vol.129 , pp. 331-355
    • Toh, K.-C.1    Tseng, P.2    Yun, S.3
  • 24
    • 46749146509 scopus 로고    scopus 로고
    • A coordinate gradient descent method for nonsmooth separable minimization
    • P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth separable minimization. Mathematical Programming, 117:387-423, 2007.
    • (2007) Mathematical Programming , vol.117 , pp. 387-423
    • Tseng, P.1    Yun, S.2
  • 26
    • 79251515796 scopus 로고    scopus 로고
    • Solving log-determinant optimization problems by a Newton-CG primal proximal point algorithm
    • C. Wang, D. Sun, and K.-C. Toh. Solving log-determinant optimization problems by a Newton-CG primal proximal point algorithm. SIAM J. Optimization, 20:2994-3013, 2010.
    • (2010) SIAM J. Optimization , vol.20 , pp. 2994-3013
    • Wang, C.1    Sun, D.2    Toh, K.-C.3
  • 27
    • 84899019085 scopus 로고    scopus 로고
    • Dirty statistical models
    • E. Yang and P. Ravikumar. Dirty statistical models. In NIPS, 2013.
    • (2013) NIPS
    • Yang, E.1    Ravikumar, P.2
  • 28
    • 84937930992 scopus 로고    scopus 로고
    • Constant nullspace strong convexity and fast convergence of proximal methods under high-dimensional settings
    • E.-H. Yen, C.-J. Hsieh, P. Ravikumar, and I. S. Dhillon. Constant nullspace strong convexity and fast convergence of proximal methods under high-dimensional settings. In NIPS, 2014.
    • (2014) NIPS
    • Yen, E.-H.1    Hsieh, C.-J.2    Ravikumar, P.3    Dhillon, I.S.4
  • 29
    • 84864920041 scopus 로고    scopus 로고
    • An improved GLMNET for L1-regularized logistic regression
    • G.-X. Yuan, C.-H. Ho, and C.-J. Lin. An improved GLMNET for L1-regularized logistic regression. JMLR, 13:1999-2030, 2012.
    • (2012) JMLR , vol.13 , pp. 1999-2030
    • Yuan, G.-X.1    Ho, C.-H.2    Lin, C.-J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.