-
1
-
-
84872015802
-
Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions
-
A. Agarwal, S. Negahban, and M. J. Wainwright. Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions. Annals if Statistics, 40(2):1171-1197, 2012.
-
(2012)
Annals If Statistics
, vol.40
, Issue.2
, pp. 1171-1197
-
-
Agarwal, A.1
Negahban, S.2
Wainwright, M.J.3
-
2
-
-
80051762104
-
Distributed optimization and statistical learning via the alternating direction method of multipliers
-
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1):1-122, 2011.
-
(2011)
Foundations and Trends in Machine Learning
, vol.3
, Issue.1
, pp. 1-122
-
-
Boyd, S.1
Parikh, N.2
Chu, E.3
Peleato, B.4
Eckstein, J.5
-
3
-
-
84884672748
-
Simple bounds for recovering low-complexity models
-
E. Candes and B. Recht. Simple bounds for recovering low-complexity models. Mathemetical Programming, 2012.
-
(2012)
Mathemetical Programming
-
-
Candes, E.1
Recht, B.2
-
4
-
-
79960675858
-
Robust principal component analysis?
-
E. J. Candes, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? J. Assoc. Comput. Mach., 58(3):1-37, 2011.
-
(2011)
J. Assoc. Comput. Mach.
, vol.58
, Issue.3
, pp. 1-37
-
-
Candes, E.J.1
Li, X.2
Ma, Y.3
Wright, J.4
-
6
-
-
79960591511
-
Rank-sparsity incoherence for matrix decomposition
-
V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky. Rank-sparsity incoherence for matrix decomposition. Siam J. Optim, 21(2):572-596, 2011.
-
(2011)
Siam J. Optim
, vol.21
, Issue.2
, pp. 572-596
-
-
Chandrasekaran, V.1
Sanghavi, S.2
Parrilo, P.A.3
Willsky, A.S.4
-
7
-
-
84879946361
-
Low-rank matrix recovery from errors and erasures
-
Y. Chen, A. Jalali, S. Sanghavi, and C. Caramanis. Low-rank matrix recovery from errors and erasures. IEEE Transactions on Information Theory, 59(7):4324-4337, 2013.
-
(2013)
IEEE Transactions on Information Theory
, vol.59
, Issue.7
, pp. 4324-4337
-
-
Chen, Y.1
Jalali, A.2
Sanghavi, S.3
Caramanis, C.4
-
8
-
-
84937925595
-
A generalization of principal component analysis to the exponential family
-
M. Collins, S. Dasgupta, and R. E. Schapire. A generalization of principal component analysis to the exponential family. In NIPS, 2012.
-
(2012)
NIPS
-
-
Collins, M.1
Dasgupta, S.2
Schapire, R.E.3
-
10
-
-
84877783090
-
A divide-and-conquer method for sparse inverse covariance estimation
-
C.-J. Hsieh, I. S. Dhillon, P. Ravikumar, and A. Banerjee. A divide-and-conquer method for sparse inverse covariance estimation. In NIPS, 2012.
-
(2012)
NIPS
-
-
Hsieh, C.-J.1
Dhillon, I.S.2
Ravikumar, P.3
Banerjee, A.4
-
11
-
-
84919790414
-
Nuclear norm minimization via active subspace selection
-
C.-J. Hsieh and P. A. Olsen. Nuclear norm minimization via active subspace selection. In ICML, 2014.
-
(2014)
ICML
-
-
Hsieh, C.-J.1
Olsen, P.A.2
-
12
-
-
85162490550
-
Sparse inverse covariance matrix estimation using quadratic approximation
-
C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, and P. Ravikumar. Sparse inverse covariance matrix estimation using quadratic approximation. In NIPS, 2011.
-
(2011)
NIPS
-
-
Hsieh, C.-J.1
Sustik, M.A.2
Dhillon, I.S.3
Ravikumar, P.4
-
13
-
-
84898981075
-
BIG & QUIC: Sparse inverse covariance estimation for a million variables
-
C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, P. Ravikumar, and R. A. Poldrack. BIG & QUIC: Sparse inverse covariance estimation for a million variables. In NIPS, 2013.
-
(2013)
NIPS
-
-
Hsieh, C.-J.1
Sustik, M.A.2
Dhillon, I.S.3
Ravikumar, P.4
Poldrack, R.A.5
-
14
-
-
81255189015
-
Robust matrix decomposition with sparse corruptions
-
D. Hsu, S. M. Kakade, and T. Zhang. Robust matrix decomposition with sparse corruptions. IEEE Trans. Inform. Theory, 57:7221-7234, 2011.
-
(2011)
IEEE Trans. Inform. Theory
, vol.57
, pp. 7221-7234
-
-
Hsu, D.1
Kakade, S.M.2
Zhang, T.3
-
16
-
-
84877762791
-
Proximal Newton-type methods for convex optimization
-
J. D. Lee, Y. Sun, and M. A. Saunders. Proximal Newton-type methods for convex optimization. In NIPS, 2012.
-
(2012)
NIPS
-
-
Lee, J.D.1
Sun, Y.2
Saunders, M.A.3
-
17
-
-
84880972942
-
Alternating direction methods for latent variable Gaussian graphical model selection
-
S. Ma, L. Xue, and H. Zou. Alternating direction methods for latent variable Gaussian graphical model selection. Neural Computation, 25(8):2172-2198, 2013.
-
(2013)
Neural Computation
, vol.25
, Issue.8
, pp. 2172-2198
-
-
Ma, S.1
Xue, L.2
Zou, H.3
-
18
-
-
84871600478
-
A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers
-
S. N. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers. Statistical Science, 27(4):538-557, 2012.
-
(2012)
Statistical Science
, vol.27
, Issue.4
, pp. 538-557
-
-
Negahban, S.N.1
Ravikumar, P.2
Wainwright, M.J.3
Yu, B.4
-
19
-
-
84877779852
-
Newton-like methods for sparse inverse covariance estimation
-
P. Olsen, F. Oztoprak, J. Nocedal, and S. Rennie. Newton-like methods for sparse inverse covariance estimation. In NIPS, 2012.
-
(2012)
NIPS
-
-
Olsen, P.1
Oztoprak, F.2
Nocedal, J.3
Rennie, S.4
-
22
-
-
85162449444
-
Greedy algorithms for structurally constrained high dimensional problems
-
A. Tewari, P. Ravikumar, and I. Dhillon. Greedy algorithms for structurally constrained high dimensional problems. In NIPS, 2011.
-
(2011)
NIPS
-
-
Tewari, A.1
Ravikumar, P.2
Dhillon, I.3
-
23
-
-
81155131299
-
A block coordinate gradient descent method for regularized convex separable optimization and covariance selection
-
K.-C. Toh, P. Tseng, and S. Yun. A block coordinate gradient descent method for regularized convex separable optimization and covariance selection. Mathemetical Programming, 129:331-355, 2011.
-
(2011)
Mathemetical Programming
, vol.129
, pp. 331-355
-
-
Toh, K.-C.1
Tseng, P.2
Yun, S.3
-
24
-
-
46749146509
-
A coordinate gradient descent method for nonsmooth separable minimization
-
P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth separable minimization. Mathematical Programming, 117:387-423, 2007.
-
(2007)
Mathematical Programming
, vol.117
, pp. 387-423
-
-
Tseng, P.1
Yun, S.2
-
25
-
-
0003852679
-
Handwritten digit recognition by combined classifiers
-
M. van Breukelen, R. P. W. Duin, D. M. J. Tax, and J. E. den Hartog. Handwritten digit recognition by combined classifiers. Kybernetika, 34(4):381-386, 1998.
-
(1998)
Kybernetika
, vol.34
, Issue.4
, pp. 381-386
-
-
Van Breukelen, M.1
Duin, R.P.W.2
Tax, D.M.J.3
Den Hartog, J.E.4
-
26
-
-
79251515796
-
Solving log-determinant optimization problems by a Newton-CG primal proximal point algorithm
-
C. Wang, D. Sun, and K.-C. Toh. Solving log-determinant optimization problems by a Newton-CG primal proximal point algorithm. SIAM J. Optimization, 20:2994-3013, 2010.
-
(2010)
SIAM J. Optimization
, vol.20
, pp. 2994-3013
-
-
Wang, C.1
Sun, D.2
Toh, K.-C.3
-
27
-
-
84899019085
-
Dirty statistical models
-
E. Yang and P. Ravikumar. Dirty statistical models. In NIPS, 2013.
-
(2013)
NIPS
-
-
Yang, E.1
Ravikumar, P.2
-
28
-
-
84937930992
-
Constant nullspace strong convexity and fast convergence of proximal methods under high-dimensional settings
-
E.-H. Yen, C.-J. Hsieh, P. Ravikumar, and I. S. Dhillon. Constant nullspace strong convexity and fast convergence of proximal methods under high-dimensional settings. In NIPS, 2014.
-
(2014)
NIPS
-
-
Yen, E.-H.1
Hsieh, C.-J.2
Ravikumar, P.3
Dhillon, I.S.4
-
29
-
-
84864920041
-
An improved GLMNET for L1-regularized logistic regression
-
G.-X. Yuan, C.-H. Ho, and C.-J. Lin. An improved GLMNET for L1-regularized logistic regression. JMLR, 13:1999-2030, 2012.
-
(2012)
JMLR
, vol.13
, pp. 1999-2030
-
-
Yuan, G.-X.1
Ho, C.-H.2
Lin, C.-J.3
|