-
5
-
-
0025448521
-
The strength of weak learnability
-
Schapire, R.E.: The strength of weak learnability. Machine Learning 5, 197-227 (1990)
-
(1990)
Machine Learning
, vol.5
, pp. 197-227
-
-
Schapire, R.E.1
-
6
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Computer and System Sciences 55(1), 119-139 (1997)
-
(1997)
J. Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
7
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Machine Learning 37(3), 297-336 (1999)
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
8
-
-
0035371148
-
An adaptive version of the boost by majority algorithm
-
Freund, Y.: An adaptive version of the boost by majority algorithm. Machine Learning 43(3), 293-318 (2001)
-
(2001)
Machine Learning
, vol.43
, Issue.3
, pp. 293-318
-
-
Freund, Y.1
-
9
-
-
32544445427
-
Boosting by weighting critical and erroneous samples
-
Gómez-Verdejo, V., Ortega-Moral, M., Arenas-García, J., Figueiras-Vidal, A.R.: Boosting by weighting critical and erroneous samples. Neurocomputing 69(7-9), 679-685 (2006)
-
(2006)
Neurocomputing
, vol.69
, Issue.7-9
, pp. 679-685
-
-
Gómez-Verdejo, V.1
Ortega-Moral, M.2
Arenas-García, J.3
Figueiras-Vidal, A.R.4
-
10
-
-
39549086158
-
A dynamically adjusted mixed emphasis method for building boosting ensembles
-
Gómez-Verdejo, V., Arenas-García, J., Figueiras-Vidal, A.R.: A dynamically adjusted mixed emphasis method for building boosting ensembles. IEEE Trans. Neural Networks 19(1), 3-17 (2008)
-
(2008)
IEEE Trans. Neural Networks
, vol.19
, Issue.1
, pp. 3-17
-
-
Gómez-Verdejo, V.1
Arenas-García, J.2
Figueiras-Vidal, A.R.3
-
11
-
-
0001102148
-
Regularizing adaboost
-
In: Kears, M., Solla, S., Cohn, D. (eds.) Cambridge University Press, Cambridge
-
Rätsch, G., Onoda, T., Müller, K.R.: Regularizing Adaboost. In: Kears, M., Solla, S., Cohn, D. (eds.) Advances in Neural Information Processing Systems, vol. 11, pp. 564-570. Cambridge University Press, Cambridge (1999)
-
(1999)
Advances in Neural Information Processing Systems
, vol.11
, pp. 564-570
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.R.3
-
12
-
-
0342502195
-
Soft margins for AdaBoost
-
Rätsch, G., Onoda, T., Müller, K.R.: Soft margins for AdaBoost. Machine Learning 42(3), 287-320 (2001)
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.R.3
-
14
-
-
33845953137
-
Reducing the overfitting of AdaBoost by controlling its data distribution skewness
-
Sun, Y., Todorovic, S., Li, J.: Reducing the overfitting of AdaBoost by controlling its data distribution skewness. International Journal of Pattern Recognition and Artificial Intelligence 20(7), 1093-1116 (2006)
-
(2006)
International Journal of Pattern Recognition and Artificial Intelligence
, vol.20
, Issue.7
, pp. 1093-1116
-
-
Sun, Y.1
Todorovic, S.2
Li, J.3
-
15
-
-
77950861838
-
Boosting through optimization of margin distributions
-
Shen, C., Li, H.: Boosting through optimization of margin distributions. IEEE Trans. Neural Networks 21(4), 659-666 (2010)
-
(2010)
IEEE Trans. Neural Networks
, vol.21
, Issue.4
, pp. 659-666
-
-
Shen, C.1
Li, H.2
-
16
-
-
39049086240
-
An efficient modified boosting method for solving classification problems
-
Zhang, C.-X., Zhang, J.-S., Zhang, G.-Y.: An efficient modified boosting method for solving classification problems. J. Computational and Applied Mathematics 214(2), 381-392 (2008)
-
(2008)
J. Computational and Applied Mathematics
, vol.214
, Issue.2
, pp. 381-392
-
-
Zhang, C.-X.1
Zhang, J.-S.2
Zhang, G.-Y.3
-
17
-
-
0142025124
-
Constructing support vector machine ensemble
-
Kim, H.C., Pang, S., Je, H.M., Kim, D., Bang, S.Y.: Constructing support vector machine ensemble. Pattern Recognition 26, 2757-2767 (2003)
-
(2003)
Pattern Recognition
, vol.26
, pp. 2757-2767
-
-
Kim, H.C.1
Pang, S.2
Je, H.M.3
Kim, D.4
Bang, S.Y.5
-
18
-
-
44649197212
-
Adaboost with SVM-based component classifiers
-
Li, X., Wang, L., Sung, E.: Adaboost with SVM-based component classifiers. Engineering Applications of Artificial Intelligence 21, 785-795 (2008)
-
(2008)
Engineering Applications of Artificial Intelligence
, vol.21
, pp. 785-795
-
-
Li, X.1
Wang, L.2
Sung, E.3
-
20
-
-
84876902833
-
Real Adaboost with gate controlled fusion
-
Mayhua-López, E., Gómez-Verdejo, V., Figueiras-Vidal, A.R.: Real Adaboost with gate controlled fusion. IEEE Trans. Neural Networks and Learning Systems 23(12), 2003-2009 (2012)
-
(2012)
IEEE Trans. Neural Networks and Learning Systems
, vol.23
, Issue.12
, pp. 2003-2009
-
-
Mayhua-López, E.1
Gómez-Verdejo, V.2
Figueiras-Vidal, A.R.3
-
21
-
-
84880058382
-
-
UCI Machine Learning Repository. School Information & Computer Sciences, Univ. California, Irvine
-
UCI Machine Learning Repository. School Information & Computer Sciences, Univ. California, Irvine, http://archive.ics.uci.edu/ml
-
-
-
-
23
-
-
0032594960
-
Moderating the outputs of support vector machine classifiers
-
Kwok, J.T.Y.: Moderating the outputs of support vector machine classifiers. IEEE Trans. Neural Networks 10(5), 1018-1031 (1999)
-
(1999)
IEEE Trans. Neural Networks
, vol.10
, Issue.5
, pp. 1018-1031
-
-
Kwok, J.T.Y.1
|