메뉴 건너뛰기




Volumn 25, Issue 7, 2015, Pages 408-416

Cargo adaptors: Structures illuminate mechanisms regulating vesicle biogenesis

Author keywords

Cargo adaptor; GTPase; Membrane trafficking; Vesicle

Indexed keywords

ADAPTOR PROTEIN; ADENOSINE DIPHOSPHATE RIBOSYLATION FACTOR 1; CARGO ADAPTOR PROTEIN; CLATHRIN; COAT PROTEIN COMPLEX I; COAT PROTEIN COMPLEX II; UNCLASSIFIED DRUG; PROTEIN BINDING;

EID: 84937640336     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2015.02.005     Document Type: Review
Times cited : (54)

References (111)
  • 1
    • 0029872276 scopus 로고    scopus 로고
    • Coat proteins and vesicle budding
    • Schekman R., Orci L. Coat proteins and vesicle budding. Science 1996, 271:1526-1533.
    • (1996) Science , vol.271 , pp. 1526-1533
    • Schekman, R.1    Orci, L.2
  • 2
    • 0842324801 scopus 로고    scopus 로고
    • The mechanisms of vesicle budding and fusion
    • Bonifacino J.S., Glick B.S. The mechanisms of vesicle budding and fusion. Cell 2004, 116:153-166.
    • (2004) Cell , vol.116 , pp. 153-166
    • Bonifacino, J.S.1    Glick, B.S.2
  • 4
    • 69949183624 scopus 로고    scopus 로고
    • Conserved functions of membrane active GTPases in coated vesicle formation
    • Pucadyil T.J., Schmid S.L. Conserved functions of membrane active GTPases in coated vesicle formation. Science 2009, 325:1217-1220.
    • (2009) Science , vol.325 , pp. 1217-1220
    • Pucadyil, T.J.1    Schmid, S.L.2
  • 5
    • 79957473559 scopus 로고    scopus 로고
    • ARF family G proteins and their regulators: roles in membrane transport, development and disease
    • Donaldson J.G., Jackson C.L. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat. Rev. Mol. Cell. Biol. 2011, 12:362-375.
    • (2011) Nat. Rev. Mol. Cell. Biol. , vol.12 , pp. 362-375
    • Donaldson, J.G.1    Jackson, C.L.2
  • 6
    • 69249135065 scopus 로고    scopus 로고
    • Tickets to ride: selecting cargo for clathrin-regulated internalization
    • Traub L.M. Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat. Rev. Mol. Cell Biol. 2009, 10:583-596.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 583-596
    • Traub, L.M.1
  • 7
    • 77955050742 scopus 로고    scopus 로고
    • Regulation of coat assembly: sorting things out at the ER
    • Miller E.A., Barlowe C. Regulation of coat assembly: sorting things out at the ER. Curr. Opin. Cell Biol. 2010, 22:447-453.
    • (2010) Curr. Opin. Cell Biol. , vol.22 , pp. 447-453
    • Miller, E.A.1    Barlowe, C.2
  • 8
    • 79960742369 scopus 로고    scopus 로고
    • Endocytic sorting of transmembrane protein cargo
    • Kelly B.T., Owen D.J. Endocytic sorting of transmembrane protein cargo. Curr. Opin. Cell Biol. 2011, 23:404-412.
    • (2011) Curr. Opin. Cell Biol. , vol.23 , pp. 404-412
    • Kelly, B.T.1    Owen, D.J.2
  • 9
    • 84891894909 scopus 로고    scopus 로고
    • Adaptor proteins involved in polarized sorting
    • Bonifacino J.S. Adaptor proteins involved in polarized sorting. J. Cell Biol. 2014, 204:7-17.
    • (2014) J. Cell Biol. , vol.204 , pp. 7-17
    • Bonifacino, J.S.1
  • 10
    • 84900802943 scopus 로고    scopus 로고
    • Structure and mechanism of COPI vesicle biogenesis
    • Jackson L.P. Structure and mechanism of COPI vesicle biogenesis. Curr. Opin. Cell Biol. 2014, 29:67-73.
    • (2014) Curr. Opin. Cell Biol. , vol.29 , pp. 67-73
    • Jackson, L.P.1
  • 11
    • 77955050491 scopus 로고    scopus 로고
    • Structure and mechanism in membrane trafficking
    • Hughson F.M., Reinisch K.M. Structure and mechanism in membrane trafficking. Curr. Opin. Cell Biol. 2010, 22:454-460.
    • (2010) Curr. Opin. Cell Biol. , vol.22 , pp. 454-460
    • Hughson, F.M.1    Reinisch, K.M.2
  • 12
    • 84865305431 scopus 로고    scopus 로고
    • Structures and mechanisms of vesicle coat components and multisubunit tethering complexes
    • Jackson L.P., et al. Structures and mechanisms of vesicle coat components and multisubunit tethering complexes. Curr. Opin. Cell Biol. 2012, 24:475-483.
    • (2012) Curr. Opin. Cell Biol. , vol.24 , pp. 475-483
    • Jackson, L.P.1
  • 13
    • 0032514874 scopus 로고    scopus 로고
    • A structural explanation for the recognition of tyrosine-based endocytotic signals
    • Owen D.J., Evans P.R. A structural explanation for the recognition of tyrosine-based endocytotic signals. Science 1998, 282:1327-1332.
    • (1998) Science , vol.282 , pp. 1327-1332
    • Owen, D.J.1    Evans, P.R.2
  • 14
    • 0036295109 scopus 로고    scopus 로고
    • Phosphoregulation of sorting signal-VHS domain interactions by a direct electrostatic mechanism
    • Kato Y., et al. Phosphoregulation of sorting signal-VHS domain interactions by a direct electrostatic mechanism. Nat. Struct. Biol. 2002, 9:532-536.
    • (2002) Nat. Struct. Biol. , vol.9 , pp. 532-536
    • Kato, Y.1
  • 15
    • 0037148787 scopus 로고    scopus 로고
    • Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains
    • Misra S., et al. Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains. Nature 2002, 415:933-937.
    • (2002) Nature , vol.415 , pp. 933-937
    • Misra, S.1
  • 16
    • 18244400470 scopus 로고    scopus 로고
    • Structural basis for recognition of acidic-cluster dileucine sequence by GGA1
    • Shiba T., et al. Structural basis for recognition of acidic-cluster dileucine sequence by GGA1. Nature 2002, 415:937-941.
    • (2002) Nature , vol.415 , pp. 937-941
    • Shiba, T.1
  • 17
    • 0142063441 scopus 로고    scopus 로고
    • Biochemical and structural characterization of the interaction of memapsin 2 (beta-secretase) cytosolic domain with the VHS domain of GGA proteins
    • He X., et al. Biochemical and structural characterization of the interaction of memapsin 2 (beta-secretase) cytosolic domain with the VHS domain of GGA proteins. Biochemistry 2003, 42:12174-12180.
    • (2003) Biochemistry , vol.42 , pp. 12174-12180
    • He, X.1
  • 18
    • 0043029286 scopus 로고    scopus 로고
    • SNARE selectivity of the COPII coat
    • Mossessova E., et al. SNARE selectivity of the COPII coat. Cell 2003, 114:483-495.
    • (2003) Cell , vol.114 , pp. 483-495
    • Mossessova, E.1
  • 19
    • 2942682767 scopus 로고    scopus 로고
    • Insights into the phosphoregulation of beta-secretase sorting signal by the VHS domain of GGA1
    • Shiba T., et al. Insights into the phosphoregulation of beta-secretase sorting signal by the VHS domain of GGA1. Traffic 2004, 5:437-448.
    • (2004) Traffic , vol.5 , pp. 437-448
    • Shiba, T.1
  • 20
    • 21644473663 scopus 로고    scopus 로고
    • Molecular mechanism of ubiquitin recognition by GGA3 GAT domain
    • Kawasaki M., et al. Molecular mechanism of ubiquitin recognition by GGA3 GAT domain. Genes Cells 2005, 10:639-654.
    • (2005) Genes Cells , vol.10 , pp. 639-654
    • Kawasaki, M.1
  • 21
    • 14044278879 scopus 로고    scopus 로고
    • Structural mechanism for ubiquitinated-cargo recognition by the Golgi-localized, gamma-ear-containing, ADP-ribosylation-factor-binding proteins
    • Prag G., et al. Structural mechanism for ubiquitinated-cargo recognition by the Golgi-localized, gamma-ear-containing, ADP-ribosylation-factor-binding proteins. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:2334-2339.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 2334-2339
    • Prag, G.1
  • 22
    • 23844475775 scopus 로고    scopus 로고
    • Non-canonical YXXGPhi endocytic motifs: recognition by AP2 and preferential utilization in P2X4 receptors
    • Royle S.J., et al. Non-canonical YXXGPhi endocytic motifs: recognition by AP2 and preferential utilization in P2X4 receptors. J. Cell Sci. 2005, 118:3073-3080.
    • (2005) J. Cell Sci. , vol.118 , pp. 3073-3080
    • Royle, S.J.1
  • 23
    • 33644503590 scopus 로고    scopus 로고
    • Molecular switches involving the AP-2 beta2 appendage regulate endocytic cargo selection and clathrin coat assembly
    • Edeling M.A., et al. Molecular switches involving the AP-2 beta2 appendage regulate endocytic cargo selection and clathrin coat assembly. Dev. Cell 2006, 10:329-342.
    • (2006) Dev. Cell , vol.10 , pp. 329-342
    • Edeling, M.A.1
  • 24
    • 34247579058 scopus 로고    scopus 로고
    • The transport signal on Sec22 for packaging into COPII-coated vesicles is a conformational epitope
    • Mancias J.D., Goldberg J. The transport signal on Sec22 for packaging into COPII-coated vesicles is a conformational epitope. Mol. Cell 2007, 26:403-414.
    • (2007) Mol. Cell , vol.26 , pp. 403-414
    • Mancias, J.D.1    Goldberg, J.2
  • 25
    • 57749196168 scopus 로고    scopus 로고
    • A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex
    • Kelly B.T., et al. A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex. Nature 2008, 456:976-979.
    • (2008) Nature , vol.456 , pp. 976-979
    • Kelly, B.T.1
  • 26
    • 55549137036 scopus 로고    scopus 로고
    • Structural basis of cargo membrane protein discrimination by the human COPII coat machinery
    • Mancias J.D., Goldberg J. Structural basis of cargo membrane protein discrimination by the human COPII coat machinery. EMBO J. 2008, 27:2918-2928.
    • (2008) EMBO J. , vol.27 , pp. 2918-2928
    • Mancias, J.D.1    Goldberg, J.2
  • 27
    • 77950550447 scopus 로고    scopus 로고
    • Sorting of the Alzheimer's disease amyloid precursor protein mediated by the AP-4 complex
    • Burgos P.V., et al. Sorting of the Alzheimer's disease amyloid precursor protein mediated by the AP-4 complex. Dev. Cell 2010, 18:425-436.
    • (2010) Dev. Cell , vol.18 , pp. 425-436
    • Burgos, P.V.1
  • 28
    • 73549122575 scopus 로고    scopus 로고
    • GGA autoinhibition revisited
    • Cramer J.F., et al. GGA autoinhibition revisited. Traffic 2010, 11:259-273.
    • (2010) Traffic , vol.11 , pp. 259-273
    • Cramer, J.F.1
  • 29
    • 77953884976 scopus 로고    scopus 로고
    • A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex
    • Jackson L.P., et al. A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell 2010, 141:1220-1229.
    • (2010) Cell , vol.141 , pp. 1220-1229
    • Jackson, L.P.1
  • 30
    • 77957790534 scopus 로고    scopus 로고
    • Structural analysis of the interaction between Dishevelled2 and clathrin AP-2 adaptor, a critical step in noncanonical Wnt signaling
    • Yu A., et al. Structural analysis of the interaction between Dishevelled2 and clathrin AP-2 adaptor, a critical step in noncanonical Wnt signaling. Structure 2010, 18:1311-1320.
    • (2010) Structure , vol.18 , pp. 1311-1320
    • Yu, A.1
  • 31
    • 84863674566 scopus 로고    scopus 로고
    • Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef
    • Jia X., et al. Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef. Nat. Struct. Mol. Biol. 2012, 19:701-706.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 701-706
    • Jia, X.1
  • 32
    • 84870826366 scopus 로고    scopus 로고
    • Molecular basis for recognition of dilysine trafficking motifs by COPI
    • Jackson L.P., et al. Molecular basis for recognition of dilysine trafficking motifs by COPI. Dev. Cell 2013, 23:1255-1262.
    • (2013) Dev. Cell , vol.23 , pp. 1255-1262
    • Jackson, L.P.1
  • 33
    • 84875940159 scopus 로고    scopus 로고
    • Rules for the recognition of dilysine retrieval motifs by coatomer
    • Ma W., Goldberg J. Rules for the recognition of dilysine retrieval motifs by coatomer. EMBO J. 2013, 32:926-937.
    • (2013) EMBO J. , vol.32 , pp. 926-937
    • Ma, W.1    Goldberg, J.2
  • 34
    • 84907228011 scopus 로고    scopus 로고
    • A unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by SNX27-retromer
    • Gallon M., et al. A unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by SNX27-retromer. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:E3604-E3613.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. E3604-E3613
    • Gallon, M.1
  • 35
    • 84898733948 scopus 로고    scopus 로고
    • How HIV-1 Nef hijacks the AP-2 clathrin adaptor to downregulate CD4
    • Ren X., et al. How HIV-1 Nef hijacks the AP-2 clathrin adaptor to downregulate CD4. Elife 2014, 3:e01754.
    • (2014) Elife , vol.3 , pp. e01754
    • Ren, X.1
  • 36
    • 84894629471 scopus 로고    scopus 로고
    • Structural and functional characterization of cargo-binding sites on the mu4-subunit of adaptor protein complex 4
    • Ross B.H., et al. Structural and functional characterization of cargo-binding sites on the mu4-subunit of adaptor protein complex 4. PLoS ONE 2014, 9:e88147.
    • (2014) PLoS ONE , vol.9 , pp. e88147
    • Ross, B.H.1
  • 37
    • 84937640774 scopus 로고    scopus 로고
    • Distinct N-terminal regions of the exomer secretory vesicle cargo Chs3 regulate its trafficking itinerary
    • Weiskoff A.M., Fromme J.C. Distinct N-terminal regions of the exomer secretory vesicle cargo Chs3 regulate its trafficking itinerary. Front. Cell Dev. Biol. 2014, 2:47.
    • (2014) Front. Cell Dev. Biol. , vol.2 , pp. 47
    • Weiskoff, A.M.1    Fromme, J.C.2
  • 38
    • 46049089793 scopus 로고    scopus 로고
    • Coordination of COPII vesicle trafficking by Sec23
    • Fromme J.C., et al. Coordination of COPII vesicle trafficking by Sec23. Trends Cell. Biol. 2008, 18:330-336.
    • (2008) Trends Cell. Biol. , vol.18 , pp. 330-336
    • Fromme, J.C.1
  • 39
    • 78651066551 scopus 로고    scopus 로고
    • COPII-mediated vesicle formation at a glance
    • Jensen D., Schekman R. COPII-mediated vesicle formation at a glance. J. Cell Sci. 2011, 124:1-4.
    • (2011) J. Cell Sci. , vol.124 , pp. 1-4
    • Jensen, D.1    Schekman, R.2
  • 40
    • 0037136560 scopus 로고    scopus 로고
    • Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat
    • Bi X., et al. Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature 2002, 419:271-277.
    • (2002) Nature , vol.419 , pp. 271-277
    • Bi, X.1
  • 41
    • 35549004893 scopus 로고    scopus 로고
    • Insights into COPII coat nucleation from the structure of Sec23-Sar1 complexed with the active fragment of Sec31
    • Bi X., et al. Insights into COPII coat nucleation from the structure of Sec23-Sar1 complexed with the active fragment of Sec31. Dev. Cell 2007, 13:635-645.
    • (2007) Dev. Cell , vol.13 , pp. 635-645
    • Bi, X.1
  • 42
    • 0034965355 scopus 로고    scopus 로고
    • Dynamics of the COPII coat with GTP and stable analogues
    • Antonny B., et al. Dynamics of the COPII coat with GTP and stable analogues. Nat. Cell Biol. 2001, 3:531-537.
    • (2001) Nat. Cell Biol. , vol.3 , pp. 531-537
    • Antonny, B.1
  • 43
    • 30544436808 scopus 로고    scopus 로고
    • Structure of the Sec13/31 COPII coat cage
    • Stagg S.M., et al. Structure of the Sec13/31 COPII coat cage. Nature 2006, 439:234-238.
    • (2006) Nature , vol.439 , pp. 234-238
    • Stagg, S.M.1
  • 44
    • 34250745253 scopus 로고    scopus 로고
    • Structure and organization of coat proteins in the COPII cage
    • Fath S., et al. Structure and organization of coat proteins in the COPII cage. Cell 2007, 129:1325-1336.
    • (2007) Cell , vol.129 , pp. 1325-1336
    • Fath, S.1
  • 45
    • 48649098177 scopus 로고    scopus 로고
    • Structural basis for cargo regulation of COPII coat assembly
    • Stagg S.M., et al. Structural basis for cargo regulation of COPII coat assembly. Cell 2008, 134:474-484.
    • (2008) Cell , vol.134 , pp. 474-484
    • Stagg, S.M.1
  • 46
    • 84862216994 scopus 로고    scopus 로고
    • The structure of the Sec13/31 COPII cage bound to Sec23
    • Bhattacharya N.J., et al. The structure of the Sec13/31 COPII cage bound to Sec23. J. Mol. Biol. 2012, 420:324-334.
    • (2012) J. Mol. Biol. , vol.420 , pp. 324-334
    • Bhattacharya, N.J.1
  • 47
    • 84873549557 scopus 로고    scopus 로고
    • A pseudoatomic model of the COPII cage obtained from cryo-electron microscopy and mass spectrometry
    • Noble A.J., et al. A pseudoatomic model of the COPII cage obtained from cryo-electron microscopy and mass spectrometry. Nat. Struct. Mol. Biol. 2013, 20:167-173.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 167-173
    • Noble, A.J.1
  • 48
    • 84884689359 scopus 로고    scopus 로고
    • The structure of the COPII transport-vesicle coat assembled on membranes
    • Zanetti G., et al. The structure of the COPII transport-vesicle coat assembled on membranes. Elife 2013, 2:e00951.
    • (2013) Elife , vol.2 , pp. e00951
    • Zanetti, G.1
  • 49
    • 78751580416 scopus 로고    scopus 로고
    • The structure of a COPII tubule
    • O'Donnell J., et al. The structure of a COPII tubule. J. Struct. Biol. 2010, 173:358-364.
    • (2010) J. Struct. Biol. , vol.173 , pp. 358-364
    • O'Donnell, J.1
  • 50
    • 30844453760 scopus 로고    scopus 로고
    • Life of a clathrin coat: insights from clathrin and AP structures
    • Edeling M.A., et al. Life of a clathrin coat: insights from clathrin and AP structures. Nat. Rev. Mol. Cell Biol. 2006, 7:32-44.
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 32-44
    • Edeling, M.A.1
  • 51
    • 33748762242 scopus 로고    scopus 로고
    • Vesicle formation at the plasma membrane and trans-Golgi network: the same but different
    • McNiven M.A., Thompson H.M. Vesicle formation at the plasma membrane and trans-Golgi network: the same but different. Science 2006, 313:1591-1594.
    • (2006) Science , vol.313 , pp. 1591-1594
    • McNiven, M.A.1    Thompson, H.M.2
  • 52
    • 8444222772 scopus 로고    scopus 로고
    • Adaptors for clathrin coats: structure and function
    • Owen D.J., et al. Adaptors for clathrin coats: structure and function. Annu. Rev. Cell Dev. Biol. 2004, 20:153-191.
    • (2004) Annu. Rev. Cell Dev. Biol. , vol.20 , pp. 153-191
    • Owen, D.J.1
  • 53
    • 0033967923 scopus 로고    scopus 로고
    • Peptide-in-groove interactions link target proteins to the beta-propeller of clathrin
    • ter Haar E., et al. Peptide-in-groove interactions link target proteins to the beta-propeller of clathrin. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:1096-1100.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 1096-1100
    • ter Haar, E.1
  • 54
    • 0018344979 scopus 로고
    • Clathrin-coated vesicles: isolation, dissociation and factor-dependent reassociation of clathrin baskets
    • Keen J.H., et al. Clathrin-coated vesicles: isolation, dissociation and factor-dependent reassociation of clathrin baskets. Cell 1979, 16:303-312.
    • (1979) Cell , vol.16 , pp. 303-312
    • Keen, J.H.1
  • 55
    • 84904822861 scopus 로고    scopus 로고
    • AP2 controls clathrin polymerization with a membrane-activated switch
    • Kelly B.T., et al. AP2 controls clathrin polymerization with a membrane-activated switch. Science 2014, 345:459-463.
    • (2014) Science , vol.345 , pp. 459-463
    • Kelly, B.T.1
  • 56
    • 0037123766 scopus 로고    scopus 로고
    • Molecular architecture and functional model of the endocytic AP2 complex
    • Collins B.M., et al. Molecular architecture and functional model of the endocytic AP2 complex. Cell 2002, 109:523-535.
    • (2002) Cell , vol.109 , pp. 523-535
    • Collins, B.M.1
  • 57
    • 0026001029 scopus 로고
    • ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein
    • Serafini T., et al. ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell 1991, 67:239-253.
    • (1991) Cell , vol.67 , pp. 239-253
    • Serafini, T.1
  • 58
    • 0032998442 scopus 로고    scopus 로고
    • Phylogenetic analysis of components of the eukaryotic vesicle transport system reveals a common origin of adaptor protein complexes 1, 2, and 3 and the F subcomplex of the coatomer COPI
    • Schledzewski K., et al. Phylogenetic analysis of components of the eukaryotic vesicle transport system reveals a common origin of adaptor protein complexes 1, 2, and 3 and the F subcomplex of the coatomer COPI. J. Mol. Evol. 1999, 48:770-778.
    • (1999) J. Mol. Evol. , vol.48 , pp. 770-778
    • Schledzewski, K.1
  • 59
    • 0028226938 scopus 로고
    • En bloc incorporation of coatomer subunits during the assembly of COP-coated vesicles
    • Hara-Kuge S., et al. En bloc incorporation of coatomer subunits during the assembly of COP-coated vesicles. J. Cell Biol. 1994, 124:883-892.
    • (1994) J. Cell Biol. , vol.124 , pp. 883-892
    • Hara-Kuge, S.1
  • 60
    • 84856760126 scopus 로고    scopus 로고
    • A structure-based mechanism for Arf1-dependent recruitment of coatomer to membranes
    • Yu X., et al. A structure-based mechanism for Arf1-dependent recruitment of coatomer to membranes. Cell 2012, 148:530-542.
    • (2012) Cell , vol.148 , pp. 530-542
    • Yu, X.1
  • 61
    • 84881414181 scopus 로고    scopus 로고
    • Structural biology of Arf and Rab GTPases' effector recruitment and specificity
    • Khan A.R., Menetrey J. Structural biology of Arf and Rab GTPases' effector recruitment and specificity. Structure 2013, 21:1284-1297.
    • (2013) Structure , vol.21 , pp. 1284-1297
    • Khan, A.R.1    Menetrey, J.2
  • 62
    • 84912034278 scopus 로고    scopus 로고
    • Arf GTPases and their effectors: assembling multivalent membrane-binding platforms
    • Cherfils J. Arf GTPases and their effectors: assembling multivalent membrane-binding platforms. Curr. Opin. Struct. Biol. 2014, 29C:67-76.
    • (2014) Curr. Opin. Struct. Biol. , vol.29C , pp. 67-76
    • Cherfils, J.1
  • 63
    • 80052632698 scopus 로고    scopus 로고
    • Coatomer and dimeric ADP ribosylation factor 1 promote distinct steps in membrane scission
    • Beck R., et al. Coatomer and dimeric ADP ribosylation factor 1 promote distinct steps in membrane scission. J. Cell Biol. 2011, 194:765-777.
    • (2011) J. Cell Biol. , vol.194 , pp. 765-777
    • Beck, R.1
  • 64
    • 0033582917 scopus 로고    scopus 로고
    • Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis
    • Goldberg J. Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Cell 1999, 96:893-902.
    • (1999) Cell , vol.96 , pp. 893-902
    • Goldberg, J.1
  • 65
    • 0027155088 scopus 로고
    • The binding of AP-1 clathrin adaptor particles to Golgi membranes requires ADP-ribosylation factor, a small GTP-binding protein
    • Stamnes M.A., Rothman J.E. The binding of AP-1 clathrin adaptor particles to Golgi membranes requires ADP-ribosylation factor, a small GTP-binding protein. Cell 1993, 73:999-1005.
    • (1993) Cell , vol.73 , pp. 999-1005
    • Stamnes, M.A.1    Rothman, J.E.2
  • 66
    • 0027423161 scopus 로고
    • Biochemical dissection of AP-1 recruitment onto Golgi membranes
    • Traub L.M., et al. Biochemical dissection of AP-1 recruitment onto Golgi membranes. J. Cell Biol. 1993, 123:561-573.
    • (1993) J. Cell Biol. , vol.123 , pp. 561-573
    • Traub, L.M.1
  • 67
    • 0042591490 scopus 로고    scopus 로고
    • Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi
    • Wang Y.J., et al. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 2003, 114:299-310.
    • (2003) Cell , vol.114 , pp. 299-310
    • Wang, Y.J.1
  • 68
    • 39049139459 scopus 로고    scopus 로고
    • Binding of cargo sorting signals to AP-1 enhances its association with ADP ribosylation factor 1-GTP
    • Lee I., et al. Binding of cargo sorting signals to AP-1 enhances its association with ADP ribosylation factor 1-GTP. J. Cell Biol. 2008, 180:467-472.
    • (2008) J. Cell Biol. , vol.180 , pp. 467-472
    • Lee, I.1
  • 69
    • 4644230428 scopus 로고    scopus 로고
    • Crystal structure of the clathrin adaptor protein 1 core
    • Heldwein E.E., et al. Crystal structure of the clathrin adaptor protein 1 core. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:14108-14113.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 14108-14113
    • Heldwein, E.E.1
  • 70
    • 84874033425 scopus 로고    scopus 로고
    • Structural basis for recruitment and activation of the AP-1 clathrin adaptor complex by Arf1
    • Ren X., et al. Structural basis for recruitment and activation of the AP-1 clathrin adaptor complex by Arf1. Cell 2013, 152:755-767.
    • (2013) Cell , vol.152 , pp. 755-767
    • Ren, X.1
  • 71
    • 84878323594 scopus 로고    scopus 로고
    • The clathrin adaptor complexes as a paradigm for membrane-associated allostery
    • Canagarajah B.J., et al. The clathrin adaptor complexes as a paradigm for membrane-associated allostery. Protein Sci. 2013, 22:517-529.
    • (2013) Protein Sci. , vol.22 , pp. 517-529
    • Canagarajah, B.J.1
  • 72
    • 33751168961 scopus 로고    scopus 로고
    • The formation of TGN-to-plasma-membrane transport carriers
    • Bard F., Malhotra V. The formation of TGN-to-plasma-membrane transport carriers. Annu. Rev. Cell Dev. Biol. 2006, 22:439-455.
    • (2006) Annu. Rev. Cell Dev. Biol. , vol.22 , pp. 439-455
    • Bard, F.1    Malhotra, V.2
  • 73
    • 0029844403 scopus 로고    scopus 로고
    • Differential trafficking and timed localization of two chitin synthase proteins, Chs2p and Chs3p
    • Chuang J.S., Schekman R.W. Differential trafficking and timed localization of two chitin synthase proteins, Chs2p and Chs3p. J. Cell Biol. 1996, 135:597-610.
    • (1996) J. Cell Biol. , vol.135 , pp. 597-610
    • Chuang, J.S.1    Schekman, R.W.2
  • 74
    • 0031866442 scopus 로고    scopus 로고
    • Chs6p-dependent anterograde transport of Chs3p from the chitosome to the plasma membrane in Saccharomyces cerevisiae
    • Ziman M., et al. Chs6p-dependent anterograde transport of Chs3p from the chitosome to the plasma membrane in Saccharomyces cerevisiae. Mol. Biol. Cell 1998, 9:1565-1576.
    • (1998) Mol. Biol. Cell , vol.9 , pp. 1565-1576
    • Ziman, M.1
  • 75
    • 33749037862 scopus 로고    scopus 로고
    • Chs5/6 complex: a multiprotein complex that interacts with and conveys chitin synthase III from the trans-Golgi network to the cell surface
    • Sanchatjate S., Schekman R. Chs5/6 complex: a multiprotein complex that interacts with and conveys chitin synthase III from the trans-Golgi network to the cell surface. Mol. Biol. Cell 2006, 17:4157-4166.
    • (2006) Mol. Biol. Cell , vol.17 , pp. 4157-4166
    • Sanchatjate, S.1    Schekman, R.2
  • 76
    • 33644854880 scopus 로고    scopus 로고
    • Arf1p, Chs5p and the ChAPs are required for export of specialized cargo from the Golgi
    • Trautwein M., et al. Arf1p, Chs5p and the ChAPs are required for export of specialized cargo from the Golgi. EMBO J. 2006, 25:943-954.
    • (2006) EMBO J. , vol.25 , pp. 943-954
    • Trautwein, M.1
  • 77
    • 33749011468 scopus 로고    scopus 로고
    • Exomer: a coat complex for transport of select membrane proteins from the trans-Golgi network to the plasma membrane in yeast
    • Wang C.W., et al. Exomer: a coat complex for transport of select membrane proteins from the trans-Golgi network to the plasma membrane in yeast. J. Cell Biol. 2006, 174:973-983.
    • (2006) J. Cell Biol. , vol.174 , pp. 973-983
    • Wang, C.W.1
  • 78
    • 73949113376 scopus 로고    scopus 로고
    • The exomer coat complex transports Fus1p to the plasma membrane via a novel plasma membrane sorting signal in yeast
    • Barfield R.M., et al. The exomer coat complex transports Fus1p to the plasma membrane via a novel plasma membrane sorting signal in yeast. Mol. Biol. Cell 2009, 20:4985-4996.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 4985-4996
    • Barfield, R.M.1
  • 79
    • 79953155321 scopus 로고    scopus 로고
    • Transport to the plasma membrane is regulated differently early and late in the cell cycle in Saccharomyces cerevisiae
    • Zanolari B., et al. Transport to the plasma membrane is regulated differently early and late in the cell cycle in Saccharomyces cerevisiae. J. Cell Sci. 2011, 124:1055-1066.
    • (2011) J. Cell Sci. , vol.124 , pp. 1055-1066
    • Zanolari, B.1
  • 80
    • 84869233997 scopus 로고    scopus 로고
    • The complex interactions of Chs5p, the ChAPs, and the cargo Chs3p
    • Rockenbauch U., et al. The complex interactions of Chs5p, the ChAPs, and the cargo Chs3p. Mol. Biol. Cell 2012, 23:4402-4415.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 4402-4415
    • Rockenbauch, U.1
  • 81
    • 84867051116 scopus 로고    scopus 로고
    • Sorting signals that mediate traffic of chitin synthase III between the TGN/endosomes and to the plasma membrane in yeast
    • Starr T.L., et al. Sorting signals that mediate traffic of chitin synthase III between the TGN/endosomes and to the plasma membrane in yeast. PLoS ONE 2012, 7:e46386.
    • (2012) PLoS ONE , vol.7 , pp. e46386
    • Starr, T.L.1
  • 82
    • 84885381313 scopus 로고    scopus 로고
    • Oligomerization of the chitin synthase Chs3 is monitored at the Golgi and affects its endocytic recycling
    • Sacristan C., et al. Oligomerization of the chitin synthase Chs3 is monitored at the Golgi and affects its endocytic recycling. Mol. Microbiol. 2013, 90:252-266.
    • (2013) Mol. Microbiol. , vol.90 , pp. 252-266
    • Sacristan, C.1
  • 83
    • 84898030817 scopus 로고    scopus 로고
    • The prion-like domain in the exomer-dependent cargo Pin2 serves as a trans-Golgi retention motif
    • Ritz A.M., et al. The prion-like domain in the exomer-dependent cargo Pin2 serves as a trans-Golgi retention motif. Cell Rep. 2014, 7:249-260.
    • (2014) Cell Rep. , vol.7 , pp. 249-260
    • Ritz, A.M.1
  • 84
    • 84868549149 scopus 로고    scopus 로고
    • The exomer cargo adaptor structure reveals a novel GTPase-binding domain
    • Paczkowski J.E., et al. The exomer cargo adaptor structure reveals a novel GTPase-binding domain. EMBO J. 2012, 31:4191-4203.
    • (2012) EMBO J. , vol.31 , pp. 4191-4203
    • Paczkowski, J.E.1
  • 85
    • 84874934988 scopus 로고    scopus 로고
    • The exomer cargo adaptor features a flexible hinge domain
    • Richardson B.C., Fromme J.C. The exomer cargo adaptor features a flexible hinge domain. Structure 2013, 21:486-492.
    • (2013) Structure , vol.21 , pp. 486-492
    • Richardson, B.C.1    Fromme, J.C.2
  • 86
    • 0033000498 scopus 로고    scopus 로고
    • A structural explanation for the binding of multiple ligands by the alpha-adaptin appendage domain
    • Owen D.J., et al. A structural explanation for the binding of multiple ligands by the alpha-adaptin appendage domain. Cell 1999, 97:805-815.
    • (1999) Cell , vol.97 , pp. 805-815
    • Owen, D.J.1
  • 87
    • 84908609418 scopus 로고    scopus 로고
    • Structural basis for membrane binding and remodeling by the exomer secretory vesicle cargo adaptor
    • Paczkowski J.E., Fromme J.C. Structural basis for membrane binding and remodeling by the exomer secretory vesicle cargo adaptor. Dev. Cell 2014, 30:610-624.
    • (2014) Dev. Cell , vol.30 , pp. 610-624
    • Paczkowski, J.E.1    Fromme, J.C.2
  • 88
    • 84927121495 scopus 로고    scopus 로고
    • Structural basis for membrane targeting of the BBSome by ARL6
    • Mourao A., et al. Structural basis for membrane targeting of the BBSome by ARL6. Nat. Struct. Mol. Biol. 2014, 21:1035-1041.
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 1035-1041
    • Mourao, A.1
  • 89
    • 77954382701 scopus 로고    scopus 로고
    • Dynamic structure of membrane-anchored Arf*GTP
    • Liu Y., et al. Dynamic structure of membrane-anchored Arf*GTP. Nat. Struct. Mol. Biol. 2010, 17:876-881.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 876-881
    • Liu, Y.1
  • 90
    • 80052248915 scopus 로고    scopus 로고
    • Dynamin: functional design of a membrane fission catalyst
    • Schmid S.L., Frolov V.A. Dynamin: functional design of a membrane fission catalyst. Annu. Rev. Cell Dev. Biol. 2011, 27:79-105.
    • (2011) Annu. Rev. Cell Dev. Biol. , vol.27 , pp. 79-105
    • Schmid, S.L.1    Frolov, V.A.2
  • 91
    • 84859175662 scopus 로고    scopus 로고
    • Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains
    • Boucrot E., et al. Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains. Cell 2012, 149:124-136.
    • (2012) Cell , vol.149 , pp. 124-136
    • Boucrot, E.1
  • 92
    • 23944488301 scopus 로고    scopus 로고
    • Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle
    • Lee M.C., et al. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 2005, 122:605-617.
    • (2005) Cell , vol.122 , pp. 605-617
    • Lee, M.C.1
  • 93
    • 0037179662 scopus 로고    scopus 로고
    • Curvature of clathrin-coated pits driven by epsin
    • Ford M.G., et al. Curvature of clathrin-coated pits driven by epsin. Nature 2002, 419:361-366.
    • (2002) Nature , vol.419 , pp. 361-366
    • Ford, M.G.1
  • 94
    • 84880679646 scopus 로고    scopus 로고
    • Building a fission machine: structural insights into dynamin assembly and activation
    • Chappie J.S., Dyda F. Building a fission machine: structural insights into dynamin assembly and activation. J. Cell Sci. 2013, 126:2773-2784.
    • (2013) J. Cell Sci. , vol.126 , pp. 2773-2784
    • Chappie, J.S.1    Dyda, F.2
  • 95
    • 1442317538 scopus 로고    scopus 로고
    • BAR domains as sensors of membrane curvature: the amphiphysin BAR structure
    • Peter B.J., et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 2004, 303:495-499.
    • (2004) Science , vol.303 , pp. 495-499
    • Peter, B.J.1
  • 96
    • 84896852788 scopus 로고    scopus 로고
    • BAR domain scaffolds in dynamin-mediated membrane fission
    • Daumke O., et al. BAR domain scaffolds in dynamin-mediated membrane fission. Cell 2014, 156:882-892.
    • (2014) Cell , vol.156 , pp. 882-892
    • Daumke, O.1
  • 97
    • 35548961813 scopus 로고    scopus 로고
    • The genetic basis of a craniofacial disease provides insight into COPII coat assembly
    • Fromme J.C., et al. The genetic basis of a craniofacial disease provides insight into COPII coat assembly. Dev. Cell 2007, 13:623-634.
    • (2007) Dev. Cell , vol.13 , pp. 623-634
    • Fromme, J.C.1
  • 98
    • 0037059451 scopus 로고    scopus 로고
    • Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane
    • Baron C.L., Malhotra V. Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane. Science 2002, 295:325-328.
    • (2002) Science , vol.295 , pp. 325-328
    • Baron, C.L.1    Malhotra, V.2
  • 99
    • 84905904493 scopus 로고    scopus 로고
    • Lipid cell biology. Polyunsaturated phospholipids facilitate membrane deformation and fission by endocytic proteins
    • Pinot M., et al. Lipid cell biology. Polyunsaturated phospholipids facilitate membrane deformation and fission by endocytic proteins. Science 2014, 345:693-697.
    • (2014) Science , vol.345 , pp. 693-697
    • Pinot, M.1
  • 100
    • 84883672372 scopus 로고    scopus 로고
    • A cost-benefit analysis of the physical mechanisms of membrane curvature
    • Stachowiak J.C., et al. A cost-benefit analysis of the physical mechanisms of membrane curvature. Nat. Cell Biol. 2013, 15:1019-1027.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 1019-1027
    • Stachowiak, J.C.1
  • 101
    • 77953244134 scopus 로고    scopus 로고
    • FCHo proteins are nucleators of clathrin-mediated endocytosis
    • Henne W.M., et al. FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 2010, 328:1281-1284.
    • (2010) Science , vol.328 , pp. 1281-1284
    • Henne, W.M.1
  • 102
    • 84861898727 scopus 로고    scopus 로고
    • Membrane fission: the biogenesis of transport carriers
    • Campelo F., Malhotra V. Membrane fission: the biogenesis of transport carriers. Annu. Rev. Biochem. 2012, 81:407-427.
    • (2012) Annu. Rev. Biochem. , vol.81 , pp. 407-427
    • Campelo, F.1    Malhotra, V.2
  • 103
    • 84874771850 scopus 로고    scopus 로고
    • Cooperative recruitment of dynamin and BIN/amphiphysin/Rvs (BAR) domain-containing proteins leads to GTP-dependent membrane scission
    • Meinecke M., et al. Cooperative recruitment of dynamin and BIN/amphiphysin/Rvs (BAR) domain-containing proteins leads to GTP-dependent membrane scission. J. Biol. Chem. 2013, 288:6651-6661.
    • (2013) J. Biol. Chem. , vol.288 , pp. 6651-6661
    • Meinecke, M.1
  • 104
    • 55549125212 scopus 로고    scopus 로고
    • Arf1-GTP-induced tubule formation suggests a function of Arf family proteins in curvature acquisition at sites of vesicle budding
    • Krauss M., et al. Arf1-GTP-induced tubule formation suggests a function of Arf family proteins in curvature acquisition at sites of vesicle budding. J. Biol. Chem. 2008, 283:27717-27723.
    • (2008) J. Biol. Chem. , vol.283 , pp. 27717-27723
    • Krauss, M.1
  • 105
    • 50949133967 scopus 로고    scopus 로고
    • Arf family GTP loading is activated by, and generates, positive membrane curvature
    • Lundmark R., et al. Arf family GTP loading is activated by, and generates, positive membrane curvature. Biochem. J. 2008, 414:189-194.
    • (2008) Biochem. J. , vol.414 , pp. 189-194
    • Lundmark, R.1
  • 106
    • 77951896130 scopus 로고    scopus 로고
    • Amphipathic helices and membrane curvature
    • Drin G., Antonny B. Amphipathic helices and membrane curvature. FEBS Lett. 2010, 584:1840-1847.
    • (2010) FEBS Lett. , vol.584 , pp. 1840-1847
    • Drin, G.1    Antonny, B.2
  • 107
    • 84908199281 scopus 로고    scopus 로고
    • Insights into the mechanisms of membrane curvature and vesicle scission by the small GTPase Sar1 in the early secretory pathway
    • Hariri H., et al. Insights into the mechanisms of membrane curvature and vesicle scission by the small GTPase Sar1 in the early secretory pathway. J. Mol. Biol. 2014, 426:3811-3826.
    • (2014) J. Mol. Biol. , vol.426 , pp. 3811-3826
    • Hariri, H.1
  • 108
    • 34250890221 scopus 로고    scopus 로고
    • Molecular basis for autoregulatory interaction between GAE domain and hinge region of GGA1
    • Inoue M., et al. Molecular basis for autoregulatory interaction between GAE domain and hinge region of GGA1. Traffic 2007, 8:904-913.
    • (2007) Traffic , vol.8 , pp. 904-913
    • Inoue, M.1
  • 109
    • 69249106881 scopus 로고    scopus 로고
    • Pathways and mechanisms of endocytic recycling
    • Grant B.D., Donaldson J.G. Pathways and mechanisms of endocytic recycling. Nat. Rev. Mol. Cell Biol. 2009, 10:597-608.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 597-608
    • Grant, B.D.1    Donaldson, J.G.2
  • 110
    • 84862303678 scopus 로고    scopus 로고
    • The structures of COPI-coated vesicles reveal alternate coatomer conformations and interactions
    • Faini M., et al. The structures of COPI-coated vesicles reveal alternate coatomer conformations and interactions. Science 2012, 336:1451-1454.
    • (2012) Science , vol.336 , pp. 1451-1454
    • Faini, M.1
  • 111
    • 84879037961 scopus 로고    scopus 로고
    • A novel GTP-binding protein-adaptor protein complex responsible for export of Vangl2 from the trans Golgi network
    • Guo Y., et al. A novel GTP-binding protein-adaptor protein complex responsible for export of Vangl2 from the trans Golgi network. Elife 2013, 2:e00160.
    • (2013) Elife , vol.2 , pp. e00160
    • Guo, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.