-
1
-
-
84886100299
-
Vascular calcification: An update on mechanisms and challenges in treatment
-
M. Wu, C. Rementer, and C. M. Giachelli, "Vascular calcification: an update on mechanisms and challenges in treatment," Calcified Tissue International, vol. 93, no. 4, pp. 365-373, 2013.
-
(2013)
Calcified Tissue International
, vol.93
, Issue.4
, pp. 365-373
-
-
Wu, M.1
Rementer, C.2
Giachelli, C.M.3
-
2
-
-
84911496439
-
Mechanisms of medial arterial calcification in diabetes
-
D. A. Chistiakov, I. A. Sobenin, A. N. Orekhov, and Y. V. Bobryshev, "Mechanisms of medial arterial calcification in diabetes," Current Pharmaceutical Design, vol. 20, no. 37, pp. 5870-5883, 2014.
-
(2014)
Current Pharmaceutical Design
, vol.20
, Issue.37
, pp. 5870-5883
-
-
Chistiakov, D.A.1
Sobenin, I.A.2
Orekhov, A.N.3
Bobryshev, Y.V.4
-
3
-
-
84886803826
-
Palmitic acid increases medial calcification by inducing oxidative stress
-
M. R. Brodeur, C. Bouvet, M. Barrette, and P. Moreau, "Palmitic acid increases medial calcification by inducing oxidative stress," Journal of Vascular Research, vol. 50, no. 5, pp. 430-441, 2013.
-
(2013)
Journal of Vascular Research
, vol.50
, Issue.5
, pp. 430-441
-
-
Brodeur, M.R.1
Bouvet, C.2
Barrette, M.3
Moreau, P.4
-
4
-
-
33750904801
-
Vascular calcification: Pathobiological mechanisms and clinical implications
-
R. C. Johnson, J. A. Leopold, and J. Loscalzo, "Vascular calcification: pathobiological mechanisms and clinical implications," Circulation Research, vol. 99, no. 10, pp. 1044-1059, 2006.
-
(2006)
Circulation Research
, vol.99
, Issue.10
, pp. 1044-1059
-
-
Johnson, R.C.1
Leopold, J.A.2
Loscalzo, J.3
-
5
-
-
34249294496
-
Clinical, cellular, and molecular aspects of arterial calcification
-
R. J. Guzman, "Clinical, cellular, and molecular aspects of arterial calcification," Journal of Vascular Surgery, vol. 45, no. 6, pp. A57-A63, 2007.
-
(2007)
Journal of Vascular Surgery
, vol.45
, Issue.6
, pp. A57-A63
-
-
Guzman, R.J.1
-
6
-
-
44649133999
-
Vascular calcification: Pathobiology of a multifaceted disease
-
L. L. Demer and Y. Tintut, "Vascular calcification: pathobiology of a multifaceted disease," Circulation, vol. 117, no. 22, pp. 2938-2948, 2008.
-
(2008)
Circulation
, vol.117
, Issue.22
, pp. 2938-2948
-
-
Demer, L.L.1
Tintut, Y.2
-
7
-
-
0347444723
-
MicroRNAs: Genomics, biogenesis, mechanism, and function
-
D. P. Bartel, "MicroRNAs: genomics, biogenesis, mechanism, and function," Cell, vol. 116, no. 2, pp. 281-297, 2004.
-
(2004)
Cell
, vol.116
, Issue.2
, pp. 281-297
-
-
Bartel, D.P.1
-
8
-
-
60149088848
-
Origins and mechanisms of miRNAs and siRNAs
-
R. W. Carthew and E. J. Sontheimer, "Origins and mechanisms of miRNAs and siRNAs," Cell, vol. 136, no. 4, pp. 642-655, 2009.
-
(2009)
Cell
, vol.136
, Issue.4
, pp. 642-655
-
-
Carthew, R.W.1
Sontheimer, E.J.2
-
9
-
-
11844278458
-
Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
-
B. P. Lewis, C. B. Burge, and D. P. Bartel, "Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets," Cell, vol. 120, no. 1, pp. 15-20, 2005.
-
(2005)
Cell
, vol.120
, Issue.1
, pp. 15-20
-
-
Lewis, B.P.1
Burge, C.B.2
Bartel, D.P.3
-
10
-
-
34249076321
-
The regulation of genes and genomes by small RNAs
-
V. Ambros and X. Chen, "The regulation of genes and genomes by small RNAs," Development, vol. 134, no. 9, pp. 1635-1641, 2007.
-
(2007)
Development
, vol.134
, Issue.9
, pp. 1635-1641
-
-
Ambros, V.1
Chen, X.2
-
11
-
-
48849117482
-
MicroRNA control of cell-cell signaling during development and disease
-
J. W. Hagen and E. C. Lai, "MicroRNA control of cell-cell signaling during development and disease," Cell Cycle, vol. 7, no. 15, pp. 2327-2332, 2008.
-
(2008)
Cell Cycle
, vol.7
, Issue.15
, pp. 2327-2332
-
-
Hagen, J.W.1
Lai, E.C.2
-
12
-
-
72949093641
-
MicroRNAs as potential cancer therapeutics
-
P. Trang, J. B. Weidhaas, and F. J. Slack, "MicroRNAs as potential cancer therapeutics," Oncogene, vol. 27, no. 2, pp. S52-S57, 2008.
-
(2008)
Oncogene
, vol.27
, Issue.2
, pp. S52-S57
-
-
Trang, P.1
Weidhaas, J.B.2
Slack, F.J.3
-
13
-
-
79953327693
-
A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation
-
R. Hu, W. Liu, H. Li et al., "A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation," The Journal of Biological Chemistry, vol. 286, no. 14, pp. 12328-12339, 2011.
-
(2011)
The Journal of Biological Chemistry
, vol.286
, Issue.14
, pp. 12328-12339
-
-
Hu, R.1
Liu, W.2
Li, H.3
-
14
-
-
79952782136
-
Taurine restores Axl/Gas6 expression in vascular smooth muscle cell calcification model
-
X. B. Liao, Y. Q. Peng, X. M. Zhou et al., "Taurine restores Axl/Gas6 expression in vascular smooth muscle cell calcification model," Amino Acids, vol. 39, no. 2, pp. 375-383, 2010.
-
(2010)
Amino Acids
, vol.39
, Issue.2
, pp. 375-383
-
-
Liao, X.B.1
Peng, Y.Q.2
Zhou, X.M.3
-
15
-
-
72849121740
-
A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans
-
H. Li, H. Xie, W. Liu et al., "A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans," The Journal of Clinical Investigation, vol. 119, pp. 3666-3677, 2009.
-
(2009)
The Journal of Clinical Investigation
, vol.119
, pp. 3666-3677
-
-
Li, H.1
Xie, H.2
Liu, W.3
-
16
-
-
78650925495
-
Estrogen receptor α36 mediates a bone-sparing effect of 17β-estrodiol in postmenopausal women
-
H. Xie, M. Sun, X.-B. Liao et al., "Estrogen receptor α36 mediates a bone-sparing effect of 17β-estrodiol in postmenopausal women," Journal of Bone and Mineral Research, vol. 26, no. 1, pp. 156-168, 2011.
-
(2011)
Journal of Bone and Mineral Research
, vol.26
, Issue.1
, pp. 156-168
-
-
Xie, H.1
Sun, M.2
Liao, X.-B.3
-
17
-
-
80054123717
-
Omentin-1 attenuates arterial calcification and bone loss in osteoprotegerin-deficient mice by inhibition of RANKL expression
-
H. Xie, P.-L. Xie, X.-P. Wu et al., "Omentin-1 attenuates arterial calcification and bone loss in osteoprotegerin-deficient mice by inhibition of RANKL expression," Cardiovascular Research, vol. 92, no. 2, pp. 296-306, 2011.
-
(2011)
Cardiovascular Research
, vol.92
, Issue.2
, pp. 296-306
-
-
Xie, H.1
Xie, P.-L.2
Wu, X.-P.3
-
18
-
-
84895554049
-
MiRNA-221 and miRNA-222 synergistically function to promote vascular calcification
-
N. C. W. Mackenzie, K. A. Staines, D. Zhu, P. Genever, and V. E. MacRae, "miRNA-221 and miRNA-222 synergistically function to promote vascular calcification," Cell Biochemistry and Function, vol. 32, no. 2, pp. 209-216, 2014.
-
(2014)
Cell Biochemistry and Function
, vol.32
, Issue.2
, pp. 209-216
-
-
MacKenzie, N.C.W.1
Staines, K.A.2
Zhu, D.3
Genever, P.4
MacRae, V.E.5
-
19
-
-
84896041322
-
MiR-125b/Ets1 axis regulates transdifferentiation and calcification of vascular smoothmuscle cells in a high-phosphate environment
-
P. Wen, H. Cao, L. Fang et al., "miR-125b/Ets1 axis regulates transdifferentiation and calcification of vascular smoothmuscle cells in a high-phosphate environment," Experimental Cell Research, vol. 322, no. 2, pp. 302-312, 2014.
-
(2014)
Experimental Cell Research
, vol.322
, Issue.2
, pp. 302-312
-
-
Wen, P.1
Cao, H.2
Fang, L.3
-
20
-
-
84883178976
-
MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells
-
X. B. Liao, Z. Y. Zhang, K. Yuan et al., "MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells," Endocrinology, vol. 154, no. 9, pp. 3344-3352, 2013.
-
(2013)
Endocrinology
, vol.154
, Issue.9
, pp. 3344-3352
-
-
Liao, X.B.1
Zhang, Z.Y.2
Yuan, K.3
-
21
-
-
84867739025
-
MicroRNA-204 regulates vascular smooth muscle cell calcification in vitro and in vivo
-
R.-R. Cui, S.-J. Li, L.-J. Liu et al., "MicroRNA-204 regulates vascular smooth muscle cell calcification in vitro and in vivo," Cardiovascular Research, vol. 96, no. 2, pp. 320-329, 2012.
-
(2012)
Cardiovascular Research
, vol.96
, Issue.2
, pp. 320-329
-
-
Cui, R.-R.1
Li, S.-J.2
Liu, L.-J.3
-
22
-
-
80053292664
-
MiR-125b regulates calcification of vascular smoothmuscle cells
-
C. Goettsch, M. Rauner, N. Pacyna, U. Hempel, S.R. Bornstein, and L. C. Hofbauer, "MiR-125b regulates calcification of vascular smoothmuscle cells," American Journal of Pathology, vol. 179, no. 4, pp. 1594-1600, 2011.
-
(2011)
American Journal of Pathology
, vol.179
, Issue.4
, pp. 1594-1600
-
-
Goettsch, C.1
Rauner, M.2
Pacyna, N.3
Hempel, U.4
Bornstein, S.R.5
Hofbauer, L.C.6
-
23
-
-
33751197049
-
Regulation of osteoblast differentiation by transcription factors
-
T. Komori, "Regulation of osteoblast differentiation by transcription factors," Journal of Cellular Biochemistry, vol. 99, no. 5, pp. 1233-1239, 2006.
-
(2006)
Journal of Cellular Biochemistry
, vol.99
, Issue.5
, pp. 1233-1239
-
-
Komori, T.1
-
24
-
-
47249157776
-
Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling
-
H. B. Chang, A. Javed, Q. Dai et al., "Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling," The Journal of Biological Chemistry, vol. 283, no. 22, pp. 15319-15327, 2008.
-
(2008)
The Journal of Biological Chemistry
, vol.283
, Issue.22
, pp. 15319-15327
-
-
Chang, H.B.1
Javed, A.2
Dai, Q.3
-
25
-
-
33748428184
-
The mechanisms of uremic serum-induced expression of bone matrix proteins in bovine vascular smoothmuscle cells
-
N. X. Chen, D. Duan, K. D. O'Neill et al., "The mechanisms of uremic serum-induced expression of bone matrix proteins in bovine vascular smoothmuscle cells," Kidney International, vol. 70, no. 6, pp. 1046-1053, 2006.
-
(2006)
Kidney International
, vol.70
, Issue.6
, pp. 1046-1053
-
-
Chen, N.X.1
Duan, D.2
O'Neill, K.D.3
-
26
-
-
70350438009
-
Replicative senescence of vascular smooth muscle cells enhances the calcification through initiating the osteoblastic transition
-
R. Nakano-Kurimoto, K. Ikeda, M. Uraoka et al., "Replicative senescence of vascular smooth muscle cells enhances the calcification through initiating the osteoblastic transition," American Journal of Physiology-Heart and Circulatory Physiology, vol. 297, no. 5, pp. H1673-H1684, 2009.
-
(2009)
American Journal of Physiology-Heart and Circulatory Physiology
, vol.297
, Issue.5
, pp. H1673-H1684
-
-
Nakano-Kurimoto, R.1
Ikeda, K.2
Uraoka, M.3
-
27
-
-
33745196250
-
Bone morphogenetic protein-2 stimulates Runx2 acetylation
-
E.-J. Jeon, K.-Y. Lee, N.-S. Choi et al., "Bone morphogenetic protein-2 stimulates Runx2 acetylation," Journal of Biological Chemistry, vol. 281, no. 24, pp. 16502-16511, 2006.
-
(2006)
Journal of Biological Chemistry
, vol.281
, Issue.24
, pp. 16502-16511
-
-
Jeon, E.-J.1
Lee, K.-Y.2
Choi, N.-S.3
-
28
-
-
23044448510
-
Repression of Runx2 function by TGF-β through recruitment of class II histone deacetylases by Smad3
-
J. S. Kang, T. Alliston, R. Delston, and R. Derynck, "Repression of Runx2 function by TGF-β through recruitment of class II histone deacetylases by Smad3," The EMBO Journal, vol. 24, no. 14, pp. 2543-2555, 2005.
-
(2005)
The EMBO Journal
, vol.24
, Issue.14
, pp. 2543-2555
-
-
Kang, J.S.1
Alliston, T.2
Delston, R.3
Derynck, R.4
-
29
-
-
0031858666
-
Hoxa-2 restricts the chondrogenic domain and inhibits bone formation during development of the branchial area
-
B. Kanzler, S. J. Kuschert, Y.-H. Liu, and M. Mallo, "Hoxa-2 restricts the chondrogenic domain and inhibits bone formation during development of the branchial area," Development, vol. 125, no. 14, pp. 2587-2597, 1998.
-
(1998)
Development
, vol.125
, Issue.14
, pp. 2587-2597
-
-
Kanzler, B.1
Kuschert, S.J.2
Liu, Y.-H.3
Mallo, M.4
-
30
-
-
84860797875
-
MEF2 is regulated by CaMKIIδ2 and a HDAC4-HDAC5 heterodimer in vascular smoothmuscle cells
-
R. Ginnan, L. Y. Sun, J. J. Schwarz, and H. A. Singer, "MEF2 is regulated by CaMKIIδ2 and a HDAC4-HDAC5 heterodimer in vascular smoothmuscle cells," Biochemical Journal, vol. 444, no. 1, pp. 105-114, 2012.
-
(2012)
Biochemical Journal
, vol.444
, Issue.1
, pp. 105-114
-
-
Ginnan, R.1
Sun, L.Y.2
Schwarz, J.J.3
Singer, H.A.4
-
31
-
-
42149101188
-
GIT1 mediates HDAC5 activation by angiotensin II in vascular smooth muscle cells
-
J. Pang, C. Yan, K. Natarajan et al., "GIT1 mediates HDAC5 activation by angiotensin II in vascular smooth muscle cells," Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 5, pp. 892-898, 2008.
-
(2008)
Arteriosclerosis, Thrombosis, and Vascular Biology
, vol.28
, Issue.5
, pp. 892-898
-
-
Pang, J.1
Yan, C.2
Natarajan, K.3
-
32
-
-
36049028271
-
Angiotensin II stimulates protein kinase D-dependent histone deacetylase 5 phosphorylation and nuclear export leading to vascular smooth muscle cell hypertrophy
-
X. Xu, C.-H. Ha, C. Wong et al., "Angiotensin II stimulates protein kinase D-dependent histone deacetylase 5 phosphorylation and nuclear export leading to vascular smooth muscle cell hypertrophy," Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 11, pp. 2355-2362, 2007.
-
(2007)
Arteriosclerosis, Thrombosis, and Vascular Biology
, vol.27
, Issue.11
, pp. 2355-2362
-
-
Xu, X.1
Ha, C.-H.2
Wong, C.3
|