-
1
-
-
34247596518
-
Sparseness vs estimating conditional probabilities: Some asymptotic results
-
BARTLETT, P. & TEWARI, A. (2007). Sparseness vs estimating conditional probabilities: some asymptotic results. J. Mach. Learn. Res. 8, 775-90.
-
(2007)
J. Mach. Learn. Res
, vol.8
, pp. 775-790
-
-
BARTLETT, P.1
TEWARI, A.2
-
2
-
-
0001587464
-
The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error
-
BREIMAN, L. (1992). The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error. J. Am. Statist. Assoc. 87, 738-54.
-
(1992)
J. Am. Statist. Assoc
, vol.87
, pp. 738-754
-
-
BREIMAN, L.1
-
3
-
-
0000343716
-
Submodel selection and evaluation in regression-the X-Random case
-
BREIMAN, L. & SPECTOR, P. (1992). Submodel selection and evaluation in regression-the X-Random case. Int. Rev. Statist. 3, 291-319.
-
(1992)
Int. Rev. Statist
, vol.3
, pp. 291-319
-
-
BREIMAN, L.1
SPECTOR, P.2
-
4
-
-
34249753618
-
Support vector networks
-
CORTES, C. & VAPNIK, V. (1995). Support vector networks. Mach. Learn. 20, 273-97.
-
(1995)
Mach. Learn
, vol.20
, pp. 273-297
-
-
CORTES, C.1
VAPNIK, V.2
-
5
-
-
4944239996
-
The estimation of prediction error: Covariance penalties and cross-validation (with Discussion)
-
EFRON, B. (2004). The estimation of prediction error: covariance penalties and cross-validation (with Discussion). J. Am. Statist. Assoc. 99, 619-42.
-
(2004)
J. Am. Statist. Assoc
, vol.99
, pp. 619-642
-
-
EFRON, B.1
-
6
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
GOLUB, T., SLONIM, D., TAMAYO, P., HUARD, C., GAASENBEEK, M., MESIROV, J., COLLER, H., LOH, M., DOWNING, J. & CALIGIURI, M. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531-6.
-
(1999)
Science
, vol.286
, pp. 531-536
-
-
GOLUB, T.1
SLONIM, D.2
TAMAYO, P.3
HUARD, C.4
GAASENBEEK, M.5
MESIROV, J.6
COLLER, H.7
LOH, M.8
DOWNING, J.9
CALIGIURI, M.10
-
7
-
-
33745561205
-
An introduction to variable and feature selection
-
GUYON, I. & ELISSEFF, A. (2003). An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157-82.
-
(2003)
J. Mach. Learn. Res
, vol.3
, pp. 1157-1182
-
-
GUYON, I.1
ELISSEFF, A.2
-
8
-
-
0036161259
-
Gene selection for cancer classification using support vector machine
-
GUYON, I., WESTON, J. & VAPNIK, V. (2002). Gene selection for cancer classification using support vector machine. Mach. Learn. 46, 389-422.
-
(2002)
Mach. Learn
, vol.46
, pp. 389-422
-
-
GUYON, I.1
WESTON, J.2
VAPNIK, V.3
-
9
-
-
84925605946
-
The entire regularization path for the support vector machine
-
HASTIE, T., ROSSET, S., TIBSHIRANI, R. & HZ, J. (2004). The entire regularization path for the support vector machine. J. Mach. Learn. Res. 5, 1391-415.
-
(2004)
J. Mach. Learn. Res
, vol.5
, pp. 1391-1415
-
-
HASTIE, T.1
ROSSET, S.2
TIBSHIRANI, R.3
HZ, J.4
-
10
-
-
0033289037
-
Using the Fisher kernel method to detect remote protein homologies
-
Ed. T. Lengauer, R. Schneider, P. Bork, D. Brutlag, J. Glasgow, H. Mewes and R. Zimmer, pp, Heidelberg, Germany: AAAI
-
JAAKKOLA, T., DIEKHANS, M. & HAUSSLER, D. (1999). Using the Fisher kernel method to detect remote protein homologies. In Proc. Int. Conf. Intell. Syst. Mol. Biol., Ed. T. Lengauer, R. Schneider, P. Bork., D. Brutlag, J. Glasgow, H. Mewes and R. Zimmer, pp. 149-58. Heidelberg, Germany: AAAI.
-
(1999)
Proc. Int. Conf. Intell. Syst. Mol. Biol
, pp. 149-158
-
-
JAAKKOLA, T.1
DIEKHANS, M.2
HAUSSLER, D.3
-
11
-
-
0015000439
-
Some results on Tchebycheffian spline functions
-
KIMELDORF, G. & WAHBA, G. (1971). Some results on Tchebycheffian spline functions, J. Math. Anal. Applic. 33, 82-95.
-
(1971)
J. Math. Anal. Applic
, vol.33
, pp. 82-95
-
-
KIMELDORF, G.1
WAHBA, G.2
-
12
-
-
0036258405
-
Support vector machines and the Bayes rule in classification
-
LIN, Y. (2002). Support vector machines and the Bayes rule in classification. Data Mining Know. Disc. 6, 259-75.
-
(2002)
Data Mining Know. Disc
, vol.6
, pp. 259-275
-
-
LIN, Y.1
-
13
-
-
0036161029
-
Support vector machines for classification in nonstandard situations
-
LIN, Y., LEE, Y & WAHBA, G. (2002). Support vector machines for classification in nonstandard situations. Mach. Learn. 46, 191-202.
-
(2002)
Mach. Learn
, vol.46
, pp. 191-202
-
-
LIN, Y.1
LEE, Y.2
WAHBA, G.3
-
14
-
-
84880120366
-
Computational development of ψ-learning
-
Ed. H. Kargupta, J. Srivastava, C. Kamath and A. Goodman, pp, Philadelphia: SIAM
-
LIU, S., SHEN, X. & WONG, W. (2005). Computational development of ψ-learning. In Proc. 2005 SIAM Int. Conf. Data Mining, Ed. H. Kargupta, J. Srivastava, C. Kamath and A. Goodman, pp. 1-12. Philadelphia: SIAM.
-
(2005)
Proc. 2005 SIAM Int. Conf. Data Mining
, pp. 1-12
-
-
LIU, S.1
SHEN, X.2
WONG, W.3
-
15
-
-
33745638149
-
Multicategory ψ-learning
-
LIU, Y. & SHEN, X. (2006). Multicategory ψ-learning. J. Am. Statist. Assoc. 101, 500-9.
-
(2006)
J. Am. Statist. Assoc
, vol.101
, pp. 500-509
-
-
LIU, Y.1
SHEN, X.2
-
16
-
-
15944365213
-
Multicategory ψ-learning and support vector machine: Computational tools
-
LIU, Y., SHEN, X. & DOSS, H. (2005). Multicategory ψ-learning and support vector machine: computational tools. J. Comp. Graph. Statist. 14, 219-36.
-
(2005)
J. Comp. Graph. Statist
, vol.14
, pp. 219-236
-
-
LIU, Y.1
SHEN, X.2
DOSS, H.3
-
17
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
-
Ed. A. Smola, P. Bartlett, B. Scholkopf and D. Schuurmans, pp, Cambridge, MA: MIT Press
-
PLATT, J.C. (1999). Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In Advances in Large Margin Classifiers, Ed. A. Smola, P. Bartlett, B. Scholkopf and D. Schuurmans, pp. 61-74. Cambridge, MA: MIT Press.
-
(1999)
Advances in Large Margin Classifiers
, pp. 61-74
-
-
PLATT, J.C.1
-
18
-
-
33745635949
-
Optimal model assessment, selection and combination
-
SHEN, X. & HUANG, H-C. (2006). Optimal model assessment, selection and combination. J. Am. Statist. Assoc. 101, 554-68.
-
(2006)
J. Am. Statist. Assoc
, vol.101
, pp. 554-568
-
-
SHEN, X.1
HUANG, H.-C.2
-
19
-
-
0242679446
-
-
SHEN, X., TSENG, G.C., HANG, & X. WONG, W.H. (2003). On ψ-learning. J. Am. Statist. Assoc. 98, 724-34.
-
SHEN, X., TSENG, G.C., HANG, & X. WONG, W.H. (2003). On ψ-learning. J. Am. Statist. Assoc. 98, 724-34.
-
-
-
-
20
-
-
40249099890
-
Discussion of 'Local Rademacher complexities and oracle inequalities in risk minimization' by V. Koltchinskii
-
SHEN, X. & WANG, L. (2006). Discussion of 'Local Rademacher complexities and oracle inequalities in risk minimization' by V. Koltchinskii. Ann. Statist. 34, 2677-80.
-
(2006)
Ann. Statist
, vol.34
, pp. 2677-2680
-
-
SHEN, X.1
WANG, L.2
-
21
-
-
21844489169
-
Convergence rate of sieve estimates
-
SHEN, X. & WONG, W.H. (1994). Convergence rate of sieve estimates. Ann. Statist. 22, 580-615.
-
(1994)
Ann. Statist
, vol.22
, pp. 580-615
-
-
SHEN, X.1
WONG, W.H.2
-
22
-
-
0010786475
-
On the influence of the kernel on the consistency of support vector machines
-
STEINWART, I. (2001). On the influence of the kernel on the consistency of support vector machines. J. Mach. Learn. Res. 2, 67-93.
-
(2001)
J. Mach. Learn. Res
, vol.2
, pp. 67-93
-
-
STEINWART, I.1
-
23
-
-
4644354708
-
Sparseness of support vector machines
-
STEINWART, I. (2003). Sparseness of support vector machines. J. Mach. Learn. Res. 4, 1071-105.
-
(2003)
J. Mach. Learn. Res
, vol.4
, pp. 1071-1105
-
-
STEINWART, I.1
-
24
-
-
34247197035
-
Fast rates for support vector machines using Gaussian kernels
-
STEINWART, I. & SCOVEL, C. (2007). Fast rates for support vector machines using Gaussian kernels. Ann. Statist. 35, 575-607.
-
(2007)
Ann. Statist
, vol.35
, pp. 575-607
-
-
STEINWART, I.1
SCOVEL, C.2
-
25
-
-
3142725508
-
Optimal aggregation of classifiers in statistical learning
-
TSYBAKOV, A. (2004). Optimal aggregation of classifiers in statistical learning. Ann. Statist. 32, 135-66.
-
(2004)
Ann. Statist
, vol.32
, pp. 135-166
-
-
TSYBAKOV, A.1
-
28
-
-
33746128910
-
Estimation of generalisation error: Random and fixed inputs
-
WANG, J. & SHEN, X. (2006). Estimation of generalisation error: random and fixed inputs. Statist. Sinica 16, 569-88.
-
(2006)
Statist. Sinica
, vol.16
, pp. 569-588
-
-
WANG, J.1
SHEN, X.2
-
29
-
-
0036748375
-
The covering number in learning theory
-
ZHOU, D.X. (2002). The covering number in learning theory. J. Complexity 18, 739-67.
-
(2002)
J. Complexity
, vol.18
, pp. 739-767
-
-
ZHOU, D.X.1
|