메뉴 건너뛰기




Volumn 95, Issue 1, 2008, Pages 149-167

Probability estimation for large-margin classifiers

Author keywords

Function estimation; High dimension and low sample size; Interval estimate; Tuning; Weighting

Indexed keywords


EID: 40249094631     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/asm077     Document Type: Article
Times cited : (72)

References (29)
  • 1
    • 34247596518 scopus 로고    scopus 로고
    • Sparseness vs estimating conditional probabilities: Some asymptotic results
    • BARTLETT, P. & TEWARI, A. (2007). Sparseness vs estimating conditional probabilities: some asymptotic results. J. Mach. Learn. Res. 8, 775-90.
    • (2007) J. Mach. Learn. Res , vol.8 , pp. 775-790
    • BARTLETT, P.1    TEWARI, A.2
  • 2
    • 0001587464 scopus 로고
    • The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error
    • BREIMAN, L. (1992). The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error. J. Am. Statist. Assoc. 87, 738-54.
    • (1992) J. Am. Statist. Assoc , vol.87 , pp. 738-754
    • BREIMAN, L.1
  • 3
    • 0000343716 scopus 로고
    • Submodel selection and evaluation in regression-the X-Random case
    • BREIMAN, L. & SPECTOR, P. (1992). Submodel selection and evaluation in regression-the X-Random case. Int. Rev. Statist. 3, 291-319.
    • (1992) Int. Rev. Statist , vol.3 , pp. 291-319
    • BREIMAN, L.1    SPECTOR, P.2
  • 4
    • 34249753618 scopus 로고
    • Support vector networks
    • CORTES, C. & VAPNIK, V. (1995). Support vector networks. Mach. Learn. 20, 273-97.
    • (1995) Mach. Learn , vol.20 , pp. 273-297
    • CORTES, C.1    VAPNIK, V.2
  • 5
    • 4944239996 scopus 로고    scopus 로고
    • The estimation of prediction error: Covariance penalties and cross-validation (with Discussion)
    • EFRON, B. (2004). The estimation of prediction error: covariance penalties and cross-validation (with Discussion). J. Am. Statist. Assoc. 99, 619-42.
    • (2004) J. Am. Statist. Assoc , vol.99 , pp. 619-642
    • EFRON, B.1
  • 7
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • GUYON, I. & ELISSEFF, A. (2003). An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157-82.
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1157-1182
    • GUYON, I.1    ELISSEFF, A.2
  • 8
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machine
    • GUYON, I., WESTON, J. & VAPNIK, V. (2002). Gene selection for cancer classification using support vector machine. Mach. Learn. 46, 389-422.
    • (2002) Mach. Learn , vol.46 , pp. 389-422
    • GUYON, I.1    WESTON, J.2    VAPNIK, V.3
  • 9
    • 84925605946 scopus 로고    scopus 로고
    • The entire regularization path for the support vector machine
    • HASTIE, T., ROSSET, S., TIBSHIRANI, R. & HZ, J. (2004). The entire regularization path for the support vector machine. J. Mach. Learn. Res. 5, 1391-415.
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 1391-1415
    • HASTIE, T.1    ROSSET, S.2    TIBSHIRANI, R.3    HZ, J.4
  • 10
    • 0033289037 scopus 로고    scopus 로고
    • Using the Fisher kernel method to detect remote protein homologies
    • Ed. T. Lengauer, R. Schneider, P. Bork, D. Brutlag, J. Glasgow, H. Mewes and R. Zimmer, pp, Heidelberg, Germany: AAAI
    • JAAKKOLA, T., DIEKHANS, M. & HAUSSLER, D. (1999). Using the Fisher kernel method to detect remote protein homologies. In Proc. Int. Conf. Intell. Syst. Mol. Biol., Ed. T. Lengauer, R. Schneider, P. Bork., D. Brutlag, J. Glasgow, H. Mewes and R. Zimmer, pp. 149-58. Heidelberg, Germany: AAAI.
    • (1999) Proc. Int. Conf. Intell. Syst. Mol. Biol , pp. 149-158
    • JAAKKOLA, T.1    DIEKHANS, M.2    HAUSSLER, D.3
  • 11
    • 0015000439 scopus 로고
    • Some results on Tchebycheffian spline functions
    • KIMELDORF, G. & WAHBA, G. (1971). Some results on Tchebycheffian spline functions, J. Math. Anal. Applic. 33, 82-95.
    • (1971) J. Math. Anal. Applic , vol.33 , pp. 82-95
    • KIMELDORF, G.1    WAHBA, G.2
  • 12
    • 0036258405 scopus 로고    scopus 로고
    • Support vector machines and the Bayes rule in classification
    • LIN, Y. (2002). Support vector machines and the Bayes rule in classification. Data Mining Know. Disc. 6, 259-75.
    • (2002) Data Mining Know. Disc , vol.6 , pp. 259-275
    • LIN, Y.1
  • 13
    • 0036161029 scopus 로고    scopus 로고
    • Support vector machines for classification in nonstandard situations
    • LIN, Y., LEE, Y & WAHBA, G. (2002). Support vector machines for classification in nonstandard situations. Mach. Learn. 46, 191-202.
    • (2002) Mach. Learn , vol.46 , pp. 191-202
    • LIN, Y.1    LEE, Y.2    WAHBA, G.3
  • 14
    • 84880120366 scopus 로고    scopus 로고
    • Computational development of ψ-learning
    • Ed. H. Kargupta, J. Srivastava, C. Kamath and A. Goodman, pp, Philadelphia: SIAM
    • LIU, S., SHEN, X. & WONG, W. (2005). Computational development of ψ-learning. In Proc. 2005 SIAM Int. Conf. Data Mining, Ed. H. Kargupta, J. Srivastava, C. Kamath and A. Goodman, pp. 1-12. Philadelphia: SIAM.
    • (2005) Proc. 2005 SIAM Int. Conf. Data Mining , pp. 1-12
    • LIU, S.1    SHEN, X.2    WONG, W.3
  • 15
    • 33745638149 scopus 로고    scopus 로고
    • Multicategory ψ-learning
    • LIU, Y. & SHEN, X. (2006). Multicategory ψ-learning. J. Am. Statist. Assoc. 101, 500-9.
    • (2006) J. Am. Statist. Assoc , vol.101 , pp. 500-509
    • LIU, Y.1    SHEN, X.2
  • 16
    • 15944365213 scopus 로고    scopus 로고
    • Multicategory ψ-learning and support vector machine: Computational tools
    • LIU, Y., SHEN, X. & DOSS, H. (2005). Multicategory ψ-learning and support vector machine: computational tools. J. Comp. Graph. Statist. 14, 219-36.
    • (2005) J. Comp. Graph. Statist , vol.14 , pp. 219-236
    • LIU, Y.1    SHEN, X.2    DOSS, H.3
  • 17
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • Ed. A. Smola, P. Bartlett, B. Scholkopf and D. Schuurmans, pp, Cambridge, MA: MIT Press
    • PLATT, J.C. (1999). Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In Advances in Large Margin Classifiers, Ed. A. Smola, P. Bartlett, B. Scholkopf and D. Schuurmans, pp. 61-74. Cambridge, MA: MIT Press.
    • (1999) Advances in Large Margin Classifiers , pp. 61-74
    • PLATT, J.C.1
  • 18
    • 33745635949 scopus 로고    scopus 로고
    • Optimal model assessment, selection and combination
    • SHEN, X. & HUANG, H-C. (2006). Optimal model assessment, selection and combination. J. Am. Statist. Assoc. 101, 554-68.
    • (2006) J. Am. Statist. Assoc , vol.101 , pp. 554-568
    • SHEN, X.1    HUANG, H.-C.2
  • 19
    • 0242679446 scopus 로고    scopus 로고
    • SHEN, X., TSENG, G.C., HANG, & X. WONG, W.H. (2003). On ψ-learning. J. Am. Statist. Assoc. 98, 724-34.
    • SHEN, X., TSENG, G.C., HANG, & X. WONG, W.H. (2003). On ψ-learning. J. Am. Statist. Assoc. 98, 724-34.
  • 20
    • 40249099890 scopus 로고    scopus 로고
    • Discussion of 'Local Rademacher complexities and oracle inequalities in risk minimization' by V. Koltchinskii
    • SHEN, X. & WANG, L. (2006). Discussion of 'Local Rademacher complexities and oracle inequalities in risk minimization' by V. Koltchinskii. Ann. Statist. 34, 2677-80.
    • (2006) Ann. Statist , vol.34 , pp. 2677-2680
    • SHEN, X.1    WANG, L.2
  • 21
    • 21844489169 scopus 로고
    • Convergence rate of sieve estimates
    • SHEN, X. & WONG, W.H. (1994). Convergence rate of sieve estimates. Ann. Statist. 22, 580-615.
    • (1994) Ann. Statist , vol.22 , pp. 580-615
    • SHEN, X.1    WONG, W.H.2
  • 22
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency of support vector machines
    • STEINWART, I. (2001). On the influence of the kernel on the consistency of support vector machines. J. Mach. Learn. Res. 2, 67-93.
    • (2001) J. Mach. Learn. Res , vol.2 , pp. 67-93
    • STEINWART, I.1
  • 23
    • 4644354708 scopus 로고    scopus 로고
    • Sparseness of support vector machines
    • STEINWART, I. (2003). Sparseness of support vector machines. J. Mach. Learn. Res. 4, 1071-105.
    • (2003) J. Mach. Learn. Res , vol.4 , pp. 1071-1105
    • STEINWART, I.1
  • 24
    • 34247197035 scopus 로고    scopus 로고
    • Fast rates for support vector machines using Gaussian kernels
    • STEINWART, I. & SCOVEL, C. (2007). Fast rates for support vector machines using Gaussian kernels. Ann. Statist. 35, 575-607.
    • (2007) Ann. Statist , vol.35 , pp. 575-607
    • STEINWART, I.1    SCOVEL, C.2
  • 25
    • 3142725508 scopus 로고    scopus 로고
    • Optimal aggregation of classifiers in statistical learning
    • TSYBAKOV, A. (2004). Optimal aggregation of classifiers in statistical learning. Ann. Statist. 32, 135-66.
    • (2004) Ann. Statist , vol.32 , pp. 135-166
    • TSYBAKOV, A.1
  • 28
    • 33746128910 scopus 로고    scopus 로고
    • Estimation of generalisation error: Random and fixed inputs
    • WANG, J. & SHEN, X. (2006). Estimation of generalisation error: random and fixed inputs. Statist. Sinica 16, 569-88.
    • (2006) Statist. Sinica , vol.16 , pp. 569-588
    • WANG, J.1    SHEN, X.2
  • 29
    • 0036748375 scopus 로고    scopus 로고
    • The covering number in learning theory
    • ZHOU, D.X. (2002). The covering number in learning theory. J. Complexity 18, 739-67.
    • (2002) J. Complexity , vol.18 , pp. 739-767
    • ZHOU, D.X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.