메뉴 건너뛰기




Volumn 43, Issue 15, 2015, Pages

Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CONTROLLED STUDY; GENE EXPRESSION; HUMAN; HUMAN CELL; INTERMETHOD COMPARISON; LOGLINEAR MODEL; OBSERVATIONAL METHOD; PRIORITY JOURNAL; RNA SEQUENCE; SAMPLE; SEQUENCE ANALYSIS; STATISTICAL ANALYSIS; STATISTICAL MODEL; VARIANCE; WEIGHT; ANIMAL; GENE EXPRESSION PROFILING; GENETICS; MOUSE; PROCEDURES; REPRODUCIBILITY; TUMOR CELL LINE;

EID: 84936076693     PISSN: 03051048     EISSN: 13624962     Source Type: Journal    
DOI: 10.1093/nar/gkv412     Document Type: Article
Times cited : (352)

References (34)
  • 1
    • 78650539308 scopus 로고    scopus 로고
    • From RNA-seq reads to differential expression results
    • Oshlack, A., Robinson, M. D. and Young, M. D. (2010) From RNA-seq reads to differential expression results. Genome Biol., 11, 220.
    • (2010) Genome Biol , vol.11 , pp. 220
    • Oshlack, A.1    Robinson, M.D.2    Young, M.D.3
  • 2
    • 77955883388 scopus 로고    scopus 로고
    • Biases in Illumina transcriptome sequencing caused by random hexamer priming
    • Hansen, K. D., Brenner, S. E. and Dudoit, S. (2010) Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res., 38, e131.
    • (2010) Nucleic Acids Res , vol.38 , pp. e131
    • Hansen, K.D.1    Brenner, S.E.2    Dudoit, S.3
  • 3
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson, M. D. and Oshlack, A. (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol., 11, R25.
    • (2010) Genome Biol , vol.11 , pp. R25
    • Robinson, M.D.1    Oshlack, A.2
  • 4
    • 84909644283 scopus 로고    scopus 로고
    • Normalization of RNA-seq data using factor analysis of control genes or samples
    • Risso, D., Ngai, J., Speed, T. P. and Dudoit, S. (2014) Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol., 32, 896-902.
    • (2014) Nat. Biotechnol , vol.32 , pp. 896-902
    • Risso, D.1    Ngai, J.2    Speed, T.P.3    Dudoit, S.4
  • 5
    • 84925226706 scopus 로고    scopus 로고
    • Svaseq: Removing batch effects and other unwanted noise from sequencing data
    • Leek, J. T. (2014) svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res., doi:10. 1093/nar/gku864.
    • (2014) Nucleic Acids Res
    • Leek, J.T.1
  • 6
    • 77955298482 scopus 로고    scopus 로고
    • BaySeq: Empirical Bayesian methods for identifying differential expression in sequence count data
    • Hardcastle, T. J. and Kelly, K. A. (2010) baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics, 11, 422.
    • (2010) BMC Bioinformatics , vol.11 , pp. 422
    • Hardcastle, T.J.1    Kelly, K.A.2
  • 7
    • 84858041341 scopus 로고    scopus 로고
    • Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
    • McCarthy, D. J., Chen, Y. and Smyth, G. K. (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res., 40, 4288-4297.
    • (2012) Nucleic Acids Res , vol.40 , pp. 4288-4297
    • McCarthy, D.J.1    Chen, Y.2    Smyth, G.K.3
  • 8
    • 27644545360 scopus 로고    scopus 로고
    • Weighted analysis of paired microarray experiments
    • Kristiansson, E., Sj ögren, A., Rudemo, M. and Nerman, O. (2005) Weighted analysis of paired microarray experiments. Stat. Appl. Genet. Mol. Biol., 4, Article 30.
    • (2005) Stat. Appl. Genet. Mol. Biol. , vol.4
    • Kristiansson, E.1
  • 10
    • 37049036087 scopus 로고    scopus 로고
    • Weighted analysis of general microarray experiments
    • Sj ögren, A., Kristiansson, E., Rudemo, M. and Nerman, O. (2007) Weighted analysis of general microarray experiments. BMC Bioinformatics, 8, 387.
    • (2007) BMC Bioinformatics , vol.8 , pp. 387
    • Sjögren, A.1
  • 12
    • 51649126841 scopus 로고    scopus 로고
    • Histone deacetylase inhibitor panobinostat induces clinical responses with associated alterations in gene expression profiles in cutaneous T-cell lymphoma
    • Ellis, L., Pan, Y., Smyth, G. K., George, D. J., McCormack, C., Williams-Truax, R., Mita, M., Beck, J., Burris, H., Ryan, G. et al. (2008) Histone deacetylase inhibitor panobinostat induces clinical responses with associated alterations in gene expression profiles in cutaneous T-cell lymphoma. Clin. Cancer Res., 14, 4500-4510.
    • (2008) Clin. Cancer Res , vol.14 , pp. 4500-4510
    • Ellis, L.1    Pan, Y.2    Smyth, G.K.3    George, D.J.4    Mc Cormack, C.5    Williams-Truax, R.6    Mita, M.7    Beck, J.8    Burris, H.9    Ryan, G.10
  • 13
    • 84896735766 scopus 로고    scopus 로고
    • Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law, C. W., Chen, Y., Shi, W. and Smyth, G. K. (2014) Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol., 15, R29.
    • (2014) Genome Biol , vol.15 , pp. R29
    • Law, C.W.1    Chen, Y.2    Shi, W.3    Smyth, G.K.4
  • 14
    • 84926507971 scopus 로고    scopus 로고
    • Limma powers differential expression analyses for RNA-sequencing and microarray studies
    • Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W. and Smyth, G. K. (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., doi:10. 1093/nar/gkv007.
    • (2015) Nucleic Acids Res
    • Ritchie, M.E.1    Phipson, B.2    Wu, D.3    Hu, Y.4    Law, C.W.5    Shi, W.6    Smyth, G.K.7
  • 15
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
    • Smyth, G. K. (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol., 3, Article 3.
    • (2004) Stat. Appl. Genet. Mol. Biol , vol.3
    • Smyth, G.K.1
  • 16
    • 62549109118 scopus 로고    scopus 로고
    • Testing significance relative to a fold-change threshold is a TREAT
    • McCarthy, D. J. and Smyth, G. K. (2009) Testing significance relative to a fold-change threshold is a TREAT. Bioinformatics, 25, 765-771.
    • (2009) Bioinformatics , vol.25 , pp. 765-771
    • McCarthy, D.J.1    Smyth, G.K.2
  • 18
    • 77955801615 scopus 로고    scopus 로고
    • Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences
    • The Galaxy Team
    • Goecks, J., Nekrutenko, A., Taylor, J. and The Galaxy Team (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol., 11, R86.
    • (2010) Genome Biol , vol.11 , pp. R86
    • Goecks, J.1    Nekrutenko, A.2    Taylor, J.3
  • 21
    • 84863304598 scopus 로고    scopus 로고
    • R Development Core Team R Foundation for Statistical Computing, Vienna
    • R Development Core Team. (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
    • (2014) R: A Language and Environment for Statistical Computing
  • 22
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. : Ser. B, 57, 289-300.
    • (1995) J. R. Stat. Soc. : Ser. B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 23
    • 33845259378 scopus 로고    scopus 로고
    • Statistical analysis of an RNA titration series evaluates microarray precision and sensitivity on a whole-array basis
    • Holloway, A. J., Oshlack, A., Diyagama, D. S., Bowtell, D. D. and Smyth, G. K. (2006) Statistical analysis of an RNA titration series evaluates microarray precision and sensitivity on a whole-array basis. BMC Bioinformatics, 7, 511.
    • (2006) BMC Bioinformatics , vol.7 , pp. 511
    • Holloway, A.J.1    Oshlack, A.2    Diyagama, D.S.3    Bowtell, D.D.4    Smyth, G.K.5
  • 24
    • 84920550975 scopus 로고    scopus 로고
    • A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium
    • SEQC/MAQC-III Consortium
    • SEQC/MAQC-III Consortium. (2014) A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat. Biotechnol., 32, 903-914.
    • (2014) Nat. Biotechnol , vol.32 , pp. 903-914
  • 26
    • 84878580738 scopus 로고    scopus 로고
    • The Subread aligner: Fast, accurate and scalable read mapping by seed-and-vote
    • Liao, Y., Smyth, G. K. and Shi, W. (2013) The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res., 41, e108.
    • (2013) Nucleic Acids Res , vol.41 , pp. e108
    • Liao, Y.1    Smyth, G.K.2    Shi, W.3
  • 27
    • 84897397058 scopus 로고    scopus 로고
    • Feature Counts: An efficient general-purpose read summarization program
    • Liao, Y., Smyth, G. K. and Shi, W. (2014) featureCounts: an efficient general-purpose read summarization program. Bioinformatics, 30, 923-930.
    • (2014) Bioinformatics , vol.30 , pp. 923-930
    • Liao, Y.1    Smyth, G.K.2    Shi, W.3
  • 28
    • 75249087100 scopus 로고    scopus 로고
    • EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson, M. D., McCarthy, D. J. and Smyth, G. K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139-140.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 34
    • 84903146127 scopus 로고    scopus 로고
    • Robustly detecting differential expression in RNA sequencing data using observation weights
    • Zhou, X., Lindsay, H. and Robinson, M. D. (2014) Robustly detecting differential expression in RNA sequencing data using observation weights. Nucleic Acids Res., 42, e91.
    • (2014) Nucleic Acids Res , vol.42 , pp. e91
    • Zhou, X.1    Lindsay, H.2    Robinson, M.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.