메뉴 건너뛰기




Volumn 29, Issue 7, 2015, Pages 389-398

In silico evaluation of logD7.4 and comparison with other prediction methods

Author keywords

Distribution coefficient; Genetic algorithm (GA); Lipophilicity; LogD7.4; Quantitative structure property relationship (QSPR); Support vector machine (SVM)

Indexed keywords

ALCOHOLS; FORECASTING; LEAST SQUARES APPROXIMATIONS; MEAN SQUARE ERROR; SUPPORT VECTOR MACHINES;

EID: 84935753513     PISSN: 08869383     EISSN: 1099128X     Source Type: Journal    
DOI: 10.1002/cem.2718     Document Type: Article
Times cited : (37)

References (65)
  • 2
    • 85153539412 scopus 로고    scopus 로고
    • Relationships between lipophilic character and biological activity of new potential long-acting local anesthetics
    • AL-Saadi D, Sneader W, Waton N. Relationships between lipophilic character and biological activity of new potential long-acting local anesthetics. Med. J. Islam. Repub. Iran 1996; 10: 53-57.
    • (1996) Med. J. Islam. Repub. Iran , vol.10 , pp. 53-57
    • AL-Saadi, D.1    Sneader, W.2    Waton, N.3
  • 4
    • 77749315417 scopus 로고    scopus 로고
    • Lipophilicity in drug discovery
    • Waring MJ. Lipophilicity in drug discovery. Expet Opin. Drug. Discov. 2010; 5: 235-248.
    • (2010) Expet Opin. Drug. Discov. , vol.5 , pp. 235-248
    • Waring, M.J.1
  • 5
    • 84962428219 scopus 로고    scopus 로고
    • Molecular structure, pKa, lipophilicity, solubility, absorption, polar surface area, and blood brain barrier penetration of some antiangiogenic agents
    • Remko M, Boháč A, Kováčiková L. Molecular structure, pKa, lipophilicity, solubility, absorption, polar surface area, and blood brain barrier penetration of some antiangiogenic agents. J. Struct. Chem. 2011; 22: 635-648.
    • (2011) J. Struct. Chem. , vol.22 , pp. 635-648
    • Remko, M.1    Boháč, A.2    Kováčiková, L.3
  • 6
    • 84866879823 scopus 로고    scopus 로고
    • The influence of lipophilicity in drug discovery and design
    • Arnott JA, Planey SL. The influence of lipophilicity in drug discovery and design. Expet Opin. Drug. Discov. 2012; 7: 863-875.
    • (2012) Expet Opin. Drug. Discov. , vol.7 , pp. 863-875
    • Arnott, J.A.1    Planey, S.L.2
  • 7
    • 0033820354 scopus 로고    scopus 로고
    • The influence of lipophilicity on the pharmacokinetic behavior of drugs: concepts and examples
    • Testa B, Crivori P, Reist M, Carrupt P-A. The influence of lipophilicity on the pharmacokinetic behavior of drugs: concepts and examples. Perspect. Drug Discov. Des. 2000; 19: 179-211.
    • (2000) Perspect. Drug Discov. Des. , vol.19 , pp. 179-211
    • Testa, B.1    Crivori, P.2    Reist, M.3    Carrupt, P.-A.4
  • 8
    • 8644243613 scopus 로고
    • Partition coefficients and their uses
    • Leo A, Hansch C, Elkins D. Partition coefficients and their uses. Chem. Rev. 1971; 71: 525-616.
    • (1971) Chem. Rev. , vol.71 , pp. 525-616
    • Leo, A.1    Hansch, C.2    Elkins, D.3
  • 9
    • 79958084888 scopus 로고    scopus 로고
    • Evaluation of the use of partition coefficients and molecular surface properties as predictors of drug absorption: a provisional biopharmaceutical classification of the list of national essential medicines of Pakistan
    • NU SRR
    • NU SRR. Evaluation of the use of partition coefficients and molecular surface properties as predictors of drug absorption: a provisional biopharmaceutical classification of the list of national essential medicines of Pakistan. Daru 2011; 19: 83-99.
    • (2011) Daru , vol.19 , pp. 83-99
  • 10
    • 80055026425 scopus 로고    scopus 로고
    • Estimating the octanol/water partition coefficient for aliphatic organic compounds using semi-empirical electrotopological index
    • Souza ES, Zaramello L, Kuhnen CA, Junkes BS, Yunes RA, Heinzen VEF. Estimating the octanol/water partition coefficient for aliphatic organic compounds using semi-empirical electrotopological index. Int. J. Mol. Sci. 2011; 12: 7250-7264.
    • (2011) Int. J. Mol. Sci. , vol.12 , pp. 7250-7264
    • Souza, E.S.1    Zaramello, L.2    Kuhnen, C.A.3    Junkes, B.S.4    Yunes, R.A.5    Heinzen, V.E.F.6
  • 11
    • 79551534528 scopus 로고    scopus 로고
    • Prediction of aqueous solubility of druglike organic compounds using partial least squares, back-propagation network and support vector machine
    • Cao D-S, Xu Q-S, Liang Y-Z, Chen X, Li H-D. Prediction of aqueous solubility of druglike organic compounds using partial least squares, back-propagation network and support vector machine. J. Chemometr. 2010; 24: 584-595.
    • (2010) J. Chemometr. , vol.24 , pp. 584-595
    • Cao, D.-S.1    Xu, Q.-S.2    Liang, Y.-Z.3    Chen, X.4    Li, H.-D.5
  • 12
    • 77953844274 scopus 로고    scopus 로고
    • Overview on the rule of five
    • Pollastri MP. Overview on the rule of five. Curr. Protoc. 2010; 9: 2.
    • (2010) Curr. Protoc. , vol.9 , pp. 2
    • Pollastri, M.P.1
  • 13
    • 84870249445 scopus 로고    scopus 로고
    • Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings
    • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2012; 64: 4-17.
    • (2012) Adv. Drug Deliv. Rev. , vol.64 , pp. 4-17
    • Lipinski, C.A.1    Lombardo, F.2    Dominy, B.W.3    Feeney, P.J.4
  • 14
    • 34548147556 scopus 로고    scopus 로고
    • The rule of five revisited: applying log D in place of log P in drug-likeness filters
    • Bhal SK, Kassam K, Peirson IG, Pearl GM. The rule of five revisited: applying log D in place of log P in drug-likeness filters. Mol. Pharm. 2007; 4: 556-560.
    • (2007) Mol. Pharm. , vol.4 , pp. 556-560
    • Bhal, S.K.1    Kassam, K.2    Peirson, I.G.3    Pearl, G.M.4
  • 16
    • 3242757468 scopus 로고    scopus 로고
    • Contribution of ionization and lipophilicity to drug binding to albumin: a preliminary step toward biodistribution prediction
    • Ermondi G, Lorenti M, Caron G. Contribution of ionization and lipophilicity to drug binding to albumin: a preliminary step toward biodistribution prediction. J. Med. Chem. 2004; 47: 3949-3961.
    • (2004) J. Med. Chem. , vol.47 , pp. 3949-3961
    • Ermondi, G.1    Lorenti, M.2    Caron, G.3
  • 17
    • 84888328111 scopus 로고    scopus 로고
    • Quantitative structure-clearance relationships of acidic drugs
    • Zhivkova Z, Doytchinova I. Quantitative structure-clearance relationships of acidic drugs. Mol. Pharm. 2013; 10: 3758-3768.
    • (2013) Mol. Pharm. , vol.10 , pp. 3758-3768
    • Zhivkova, Z.1    Doytchinova, I.2
  • 18
    • 47349111077 scopus 로고    scopus 로고
    • Log D: lipophilicity for ionisable compounds
    • Kah M, Brown CD. Log D: lipophilicity for ionisable compounds. Chemosphere 2008; 72: 1401-1408.
    • (2008) Chemosphere , vol.72 , pp. 1401-1408
    • Kah, M.1    Brown, C.D.2
  • 20
    • 0036628547 scopus 로고    scopus 로고
    • Novel methods for the prediction of logP, pKa, and logD
    • Xing L, Glen RC. Novel methods for the prediction of logP, pKa, and logD. J. Chem. Inf. Comput. Sci. 2002; 42: 796-805.
    • (2002) J. Chem. Inf. Comput. Sci. , vol.42 , pp. 796-805
    • Xing, L.1    Glen, R.C.2
  • 21
    • 10644293897 scopus 로고    scopus 로고
    • Application of ALOGPS to predict 1-octanol/water distribution coefficients, logP, and logD, of AstraZeneca in-house database
    • Tetko IV, Bruneau P. Application of ALOGPS to predict 1-octanol/water distribution coefficients, logP, and logD, of AstraZeneca in-house database. J. Pharm. Sci. 2004; 93: 3103-3110.
    • (2004) J. Pharm. Sci. , vol.93 , pp. 3103-3110
    • Tetko, I.V.1    Bruneau, P.2
  • 22
    • 7444258512 scopus 로고    scopus 로고
    • Application of ALOGPS 2.1 to predict log D distribution coefficient for Pfizer proprietary compounds
    • Tetko IV, Poda GI. Application of ALOGPS 2.1 to predict log D distribution coefficient for Pfizer proprietary compounds. J. Med. Chem. 2004; 47: 5601-5604.
    • (2004) J. Med. Chem. , vol.47 , pp. 5601-5604
    • Tetko, I.V.1    Poda, G.I.2
  • 23
    • 0024716284 scopus 로고
    • Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics
    • Viswanadhan VN, Ghose AK, Revankar GR, Robins RK. Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J. Chem. Inf. Comput. Sci. 1989; 29: 163-172.
    • (1989) J. Chem. Inf. Comput. Sci. , vol.29 , pp. 163-172
    • Viswanadhan, V.N.1    Ghose, A.K.2    Revankar, G.R.3    Robins, R.K.4
  • 24
    • 0030788112 scopus 로고    scopus 로고
    • Prediction of distribution coefficient from structure. 1. Estimation method
    • Csizmadia F, Tsantili-Kakoulidou A, Panderi I, Darvas F. Prediction of distribution coefficient from structure. 1. Estimation method. J. Pharm. Sci. 1997; 86: 865-871.
    • (1997) J. Pharm. Sci. , vol.86 , pp. 865-871
    • Csizmadia, F.1    Tsantili-Kakoulidou, A.2    Panderi, I.3    Darvas, F.4
  • 25
    • 33745383499 scopus 로고    scopus 로고
    • 7.4 modeling using Bayesian regularized neural networks. Assessment and correction of the errors of prediction
    • 7.4 modeling using Bayesian regularized neural networks. Assessment and correction of the errors of prediction. J. Chem. Inf. Model. 2006; 46: 1379-1387.
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 1379-1387
    • Bruneau, P.1    McElroy, N.R.2
  • 27
    • 33847207834 scopus 로고    scopus 로고
    • Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches
    • Eckert H, Bajorath J. Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov. Today 2007; 12: 225-233.
    • (2007) Drug Discov. Today , vol.12 , pp. 225-233
    • Eckert, H.1    Bajorath, J.2
  • 28
    • 3242701695 scopus 로고    scopus 로고
    • Methods for applying the quantitative structure-activity relationship paradigm
    • In, Springer: New York
    • Esposito EX, Hopfinger AJ, Madura JD. Methods for applying the quantitative structure-activity relationship paradigm.In Chemoinformatics, Springer: New York, 2004; 131-213.
    • (2004) Chemoinformatics , pp. 131-213
    • Esposito, E.X.1    Hopfinger, A.J.2    Madura, J.D.3
  • 29
    • 84894887900 scopus 로고
    • Computer aided design of experiments
    • Kennard RW, Stone LA. Computer aided design of experiments. Technometrics 1969; 11: 137-148.
    • (1969) Technometrics , vol.11 , pp. 137-148
    • Kennard, R.W.1    Stone, L.A.2
  • 30
    • 0034578871 scopus 로고    scopus 로고
    • Modelling of the river flowrate: the influence of the training set selection
    • Kocjančič R, Zupan J. Modelling of the river flowrate: the influence of the training set selection. Chemometr. Intell. Lab. Syst. 2000; 54: 21-34.
    • (2000) Chemometr. Intell. Lab. Syst. , vol.54 , pp. 21-34
    • Kocjančič, R.1    Zupan, J.2
  • 37
    • 36849009228 scopus 로고    scopus 로고
    • Machine learning approaches for predicting compounds that interact with therapeutic and ADMET related proteins
    • Li H, Yap C, Ung C, Xue Y, Li Z, Han L, Lin H, Chen YZ. Machine learning approaches for predicting compounds that interact with therapeutic and ADMET related proteins. J. Pharm. Sci. 2007; 96: 2838-2860.
    • (2007) J. Pharm. Sci. , vol.96 , pp. 2838-2860
    • Li, H.1    Yap, C.2    Ung, C.3    Xue, Y.4    Li, Z.5    Han, L.6    Lin, H.7    Chen, Y.Z.8
  • 38
    • 34250845013 scopus 로고    scopus 로고
    • Proteometric study of ghrelin receptor function variations upon mutations using amino acid sequence autocorrelation vectors and genetic algorithm-based least square support vector machines
    • Caballero J, Fernández L, Garriga M, Abreu JI, Collina S, Fernández M. Proteometric study of ghrelin receptor function variations upon mutations using amino acid sequence autocorrelation vectors and genetic algorithm-based least square support vector machines. J. Mol. Graph. Model. 2007; 26: 166-178.
    • (2007) J. Mol. Graph. Model. , vol.26 , pp. 166-178
    • Caballero, J.1    Fernández, L.2    Garriga, M.3    Abreu, J.I.4    Collina, S.5    Fernández, M.6
  • 39
    • 28844500372 scopus 로고    scopus 로고
    • Application of support vector machine (SVM) for prediction toxic activity of different data sets
    • Zhao C, Zhang H, Zhang X, Liu M, Hu Z, Fan B. Application of support vector machine (SVM) for prediction toxic activity of different data sets. Toxicology 2006; 217: 105-119.
    • (2006) Toxicology , vol.217 , pp. 105-119
    • Zhao, C.1    Zhang, H.2    Zhang, X.3    Liu, M.4    Hu, Z.5    Fan, B.6
  • 40
    • 67651158807 scopus 로고    scopus 로고
    • QSAR study of Akt/protein kinase B (PKB) inhibitors using support vector machine
    • Dong X, Jiang C, Hu H, Yan J, Chen J, Hu Y. QSAR study of Akt/protein kinase B (PKB) inhibitors using support vector machine. Eur. J. Med. Chem. 2009; 44: 4090-4097.
    • (2009) Eur. J. Med. Chem. , vol.44 , pp. 4090-4097
    • Dong, X.1    Jiang, C.2    Hu, H.3    Yan, J.4    Chen, J.5    Hu, Y.6
  • 41
    • 20844450385 scopus 로고    scopus 로고
    • Statistical variation in progressive scrambling
    • Clark RD, Fox PC. Statistical variation in progressive scrambling. J. Comput. Aided Mol. Des. 2004; 18: 563-576.
    • (2004) J. Comput. Aided Mol. Des. , vol.18 , pp. 563-576
    • Clark, R.D.1    Fox, P.C.2
  • 42
    • 0037841526 scopus 로고    scopus 로고
    • Cross-validation as the objective function for variable-selection techniques
    • Baumann K. Cross-validation as the objective function for variable-selection techniques. TRAC-Trend Anal. Chem. 2003; 22: 395-406.
    • (2003) TRAC-Trend Anal. Chem. , vol.22 , pp. 395-406
    • Baumann, K.1
  • 43
    • 70349162515 scopus 로고    scopus 로고
    • Basic validation procedures for regression models in QSAR and QSPR studies: theory and application
    • Kiralj R, Ferreira M. Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. J. Braz. Chem. Soc. 2009; 20: 770-787.
    • (2009) J. Braz. Chem. Soc. , vol.20 , pp. 770-787
    • Kiralj, R.1    Ferreira, M.2
  • 44
    • 84887237244 scopus 로고    scopus 로고
    • A simple idea on applying large regression coefficient to improve the genetic algorithm-PLS for variable selection in multivariate calibration
    • Yun Y-H, Cao D-S, Tan M-L, Yan J, Ren D-B, Xu Q-S, Yu L, Liang Y-Z. A simple idea on applying large regression coefficient to improve the genetic algorithm-PLS for variable selection in multivariate calibration. Chemometr. Intell. Lab. Syst. 2014; 130: 76-83.
    • (2014) Chemometr. Intell. Lab. Syst. , vol.130 , pp. 76-83
    • Yun, Y.-H.1    Cao, D.-S.2    Tan, M.-L.3    Yan, J.4    Ren, D.-B.5    Xu, Q.-S.6    Yu, L.7    Liang, Y.-Z.8
  • 45
    • 0034868132 scopus 로고    scopus 로고
    • Genetic algorithms in chemometrics and chemistry: a review
    • Leardi R. Genetic algorithms in chemometrics and chemistry: a review. J. Chemometr. 2001; 15: 559-569.
    • (2001) J. Chemometr. , vol.15 , pp. 559-569
    • Leardi, R.1
  • 46
    • 84862773642 scopus 로고    scopus 로고
    • Genetic algorithms in chemometrics
    • Niazi A, Leardi R. Genetic algorithms in chemometrics. J. Chemometr. 2012; 26: 345-351.
    • (2012) J. Chemometr. , vol.26 , pp. 345-351
    • Niazi, A.1    Leardi, R.2
  • 47
    • 84871519436 scopus 로고    scopus 로고
    • Towards better understanding of feature-selection or reduction techniques for quantitative structure-activity relationship models
    • Goodarzi M, Heyden YV, Funar-Timofei S. Towards better understanding of feature-selection or reduction techniques for quantitative structure-activity relationship models. TRAC-Trend Anal. Chem. 2013; 42: 49-63.
    • (2013) TRAC-Trend Anal. Chem. , vol.42 , pp. 49-63
    • Goodarzi, M.1    Heyden, Y.V.2    Funar-Timofei, S.3
  • 49
    • 0038724207 scopus 로고    scopus 로고
    • The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models
    • Tropsha A, Gramatica P, Gombar VK. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR and Combinatorial Science 2003; 22: 69-77.
    • (2003) QSAR and Combinatorial Science , vol.22 , pp. 69-77
    • Tropsha, A.1    Gramatica, P.2    Gombar, V.K.3
  • 50
    • 84885587431 scopus 로고    scopus 로고
    • Descriptor selection methods in quantitative structure-activity relationship studies: a review study
    • Shahlaei M. Descriptor selection methods in quantitative structure-activity relationship studies: a review study. Chem. Rev. 2013; 113: 8093-8103.
    • (2013) Chem. Rev. , vol.113 , pp. 8093-8103
    • Shahlaei, M.1
  • 51
    • 37349097759 scopus 로고    scopus 로고
    • y-Randomization and its variants in QSPR/QSAR
    • Rücker C, Rücker G, Meringer M. y-Randomization and its variants in QSPR/QSAR. J. Chem. Inf. Model. 2007; 47(6): 2345-2357.
    • (2007) J. Chem. Inf. Model. , vol.47 , Issue.6 , pp. 2345-2357
    • Rücker, C.1    Rücker, G.2    Meringer, M.3
  • 52
    • 21144436508 scopus 로고    scopus 로고
    • Randomized item response theory models
    • Fox J-P. Randomized item response theory models. J. Educ. Behav. Stat. 2005; 30: 189-212.
    • (2005) J. Educ. Behav. Stat. , vol.30 , pp. 189-212
    • Fox, J.-P.1
  • 53
    • 84887544077 scopus 로고    scopus 로고
    • QSAR analysis of the effects of OATP1B1 transporter by structurally diverse natural products using a particle swarm optimization-combined multiple linear regression approach
    • Cao D-S, Liu S, Fan L, Liang Y-Z. QSAR analysis of the effects of OATP1B1 transporter by structurally diverse natural products using a particle swarm optimization-combined multiple linear regression approach. Chemometr. Intell. Lab. Syst. 2014; 130: 84-90.
    • (2014) Chemometr. Intell. Lab. Syst. , vol.130 , pp. 84-90
    • Cao, D.-S.1    Liu, S.2    Fan, L.3    Liang, Y.-Z.4
  • 55
    • 42749092988 scopus 로고    scopus 로고
    • The importance of the domain of applicability in QSAR modeling
    • Weaver S, Gleeson MP. The importance of the domain of applicability in QSAR modeling. J. Mol. Graph. Model. 2008; 26: 1315-1326.
    • (2008) J. Mol. Graph. Model. , vol.26 , pp. 1315-1326
    • Weaver, S.1    Gleeson, M.P.2
  • 56
    • 84895165560 scopus 로고    scopus 로고
    • Applicability domain dependent predictive uncertainty in QSAR regressions
    • Sahlin U, Jeliazkova N, Öberg T. Applicability domain dependent predictive uncertainty in QSAR regressions. Mol. Inform. 2014; 33: 26-35.
    • (2014) Mol. Inform. , vol.33 , pp. 26-35
    • Sahlin, U.1    Jeliazkova, N.2    Öberg, T.3
  • 57
    • 84861521242 scopus 로고    scopus 로고
    • Comparison of different approaches to define the applicability domain of QSAR models
    • Sahigara F, Mansouri K, Ballabio D, Mauri A, Consonni V, Todeschini R. Comparison of different approaches to define the applicability domain of QSAR models. Molecules 2012; 17: 4791-4810.
    • (2012) Molecules , vol.17 , pp. 4791-4810
    • Sahigara, F.1    Mansouri, K.2    Ballabio, D.3    Mauri, A.4    Consonni, V.5    Todeschini, R.6
  • 59
    • 84881337511 scopus 로고    scopus 로고
    • Prediction of retention indices for frequently reported compounds of plant essential oils using multiple linear regression, partial least squares, and support vector machine
    • Yan J, Huang JH, He M, Lu HB, Yang R, Kong B, Xu QS, Liang YZ. Prediction of retention indices for frequently reported compounds of plant essential oils using multiple linear regression, partial least squares, and support vector machine. J. Sep. Sci. 2013; 36: 2464-2471.
    • (2013) J. Sep. Sci. , vol.36 , pp. 2464-2471
    • Yan, J.1    Huang, J.H.2    He, M.3    Lu, H.B.4    Yang, R.5    Kong, B.6    Xu, Q.S.7    Liang, Y.Z.8
  • 60
    • 78651234224 scopus 로고    scopus 로고
    • Toward better QSAR/QSPR modeling: simultaneous outlier detection and variable selection using distribution of model features
    • Cao DS, Liang YZ, Xu QS, Yun YH, Li HD. Toward better QSAR/QSPR modeling: simultaneous outlier detection and variable selection using distribution of model features. J. Comput. Aided Mol. Des. 2011; 25: 67-80.
    • (2011) J. Comput. Aided Mol. Des. , vol.25 , pp. 67-80
    • Cao, D.S.1    Liang, Y.Z.2    Xu, Q.S.3    Yun, Y.H.4    Li, H.D.5
  • 61
    • 85153554162 scopus 로고    scopus 로고
    • OECD-QSAR-07---ENV-JM-MONO
    • OECD-QSAR-07---ENV-JM-MONO. 2007; 2.
    • (2007) , pp. 2
  • 62
    • 85153547565 scopus 로고    scopus 로고
    • OECD-QSAR-04---ENV-JM-MONO
    • OECD-QSAR-04---ENV-JM-MONO. 2004; 24.
    • (2004) , pp. 24
  • 63
    • 0025339490 scopus 로고
    • Drug lipophilicity in QSAR practice: I. A comparison of experimental with calculative approaches
    • Mannhold R, Dross KP, Rekker RF. Drug lipophilicity in QSAR practice: I. A comparison of experimental with calculative approaches. Quantitative Structure-Activity Relationships 1990; 9: 21-28.
    • (1990) Quantitative Structure-Activity Relationships , vol.9 , pp. 21-28
    • Mannhold, R.1    Dross, K.P.2    Rekker, R.F.3
  • 65
    • 67649222529 scopus 로고    scopus 로고
    • Lipophilicity studies on pyrrolyl-acetic acid derivatives. Experimental versus predicted logP values in relationship with aldose reductase inhibitory activity
    • Chrysanthakopoulos M, Koletsou A, Nicolaou I, Demopoulos VJ, Tsantili-Kakoulidou A. Lipophilicity studies on pyrrolyl-acetic acid derivatives. Experimental versus predicted logP values in relationship with aldose reductase inhibitory activity. QSAR and Combinatorial Science 2009; 28: 551-560.
    • (2009) QSAR and Combinatorial Science , vol.28 , pp. 551-560
    • Chrysanthakopoulos, M.1    Koletsou, A.2    Nicolaou, I.3    Demopoulos, V.J.4    Tsantili-Kakoulidou, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.