메뉴 건너뛰기




Volumn 112, Issue 25, 2015, Pages E3291-E3299

GABAB receptor deficiency causes failure of neuronal homeostasis in hippocampal networks

Author keywords

FRET; GABAB receptor; Homeostatic plasticity; Synaptic vesicle release; Syntaxin 1

Indexed keywords

4 AMINOBUTYRIC ACID A RECEPTOR; 4 AMINOBUTYRIC ACID B RECEPTOR; SNARE PROTEIN; SYNTAXIN 1;

EID: 84934887578     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1424810112     Document Type: Article
Times cited : (42)

References (50)
  • 1
    • 0034131101 scopus 로고    scopus 로고
    • Hebb and homeostasis in neuronal plasticity
    • Turrigiano GG, Nelson SB (2000) Hebb and homeostasis in neuronal plasticity. Curr Opin Neurobiol 10(3):358-364.
    • (2000) Curr Opin Neurobiol , vol.10 , Issue.3 , pp. 358-364
    • Turrigiano, G.G.1    Nelson, S.B.2
  • 2
    • 0742323527 scopus 로고    scopus 로고
    • Homeostatic plasticity in the developing nervous system
    • Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5(2):97-107.
    • (2004) Nat Rev Neurosci , vol.5 , Issue.2 , pp. 97-107
    • Turrigiano, G.G.1    Nelson, S.B.2
  • 3
    • 33745734146 scopus 로고    scopus 로고
    • Homeostatic control of neural activity: From phenomenology to molecular design
    • Davis GW (2006) Homeostatic control of neural activity: from phenomenology to molecular design. Annu Rev Neurosci 29:307-323.
    • (2006) Annu Rev Neurosci , vol.29 , pp. 307-323
    • Davis, G.W.1
  • 4
    • 33745712893 scopus 로고    scopus 로고
    • Variability, compensation and homeostasis in neuron and network function
    • Marder E, Goaillard JM (2006) Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 7(7):563-574.
    • (2006) Nat Rev Neurosci , vol.7 , Issue.7 , pp. 563-574
    • Marder, E.1    Goaillard, J.M.2
  • 5
    • 84922762943 scopus 로고    scopus 로고
    • Homeostatic control of presynaptic neurotransmitter release
    • Davis GW, Müller M (2015) Homeostatic control of presynaptic neurotransmitter release. Annu Rev Physiol 77:251-270.
    • (2015) Annu Rev Physiol , vol.77 , pp. 251-270
    • Davis, G.W.1    Müller, M.2
  • 6
    • 79959889965 scopus 로고    scopus 로고
    • Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement
    • Turrigiano G (2011) Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu Rev Neurosci 34:89-103.
    • (2011) Annu Rev Neurosci , vol.34 , pp. 89-103
    • Turrigiano, G.1
  • 7
    • 79960383831 scopus 로고    scopus 로고
    • Extensive remodeling of the presynaptic cytomatrix upon homeostatic adaptation to network activity silencing
    • Lazarevic V, Schöne C, Heine M, Gundelfinger ED, Fejtova A (2011) Extensive remodeling of the presynaptic cytomatrix upon homeostatic adaptation to network activity silencing. J Neurosci 31(28):10189-10200.
    • (2011) J Neurosci , vol.31 , Issue.28 , pp. 10189-10200
    • Lazarevic, V.1    Schöne, C.2    Heine, M.3    Gundelfinger, E.D.4    Fejtova, A.5
  • 8
    • 0037374587 scopus 로고    scopus 로고
    • Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system
    • Ehlers MD (2003) Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci 6(3):231-242.
    • (2003) Nat Neurosci , vol.6 , Issue.3 , pp. 231-242
    • Ehlers, M.D.1
  • 9
    • 85005893717 scopus 로고    scopus 로고
    • Interplay between population firing stability and single neuron dynamics in hippocampal networks
    • Slomowitz E, et al. (2015) Interplay between population firing stability and single neuron dynamics in hippocampal networks. eLife 4:e04378.
    • (2015) eLife , vol.4
    • Slomowitz, E.1
  • 11
    • 84901001729 scopus 로고    scopus 로고
    • Cell types, network homeostasis, and pathological compensation from a biologically plausible ion channel expression model
    • O'Leary T, Williams AH, Franci A, Marder E (2014) Cell types, network homeostasis, and pathological compensation from a biologically plausible ion channel expression model. Neuron 82(4):809-821.
    • (2014) Neuron , vol.82 , Issue.4 , pp. 809-821
    • O'Leary, T.1    Williams, A.H.2    Franci, A.3    Marder, E.4
  • 12
    • 54049106103 scopus 로고    scopus 로고
    • Failure of neuronal homeostasis results in common neuropsychiatric phenotypes
    • Ramocki MB, Zoghbi HY (2008) Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature 455(7215):912-918.
    • (2008) Nature , vol.455 , Issue.7215 , pp. 912-918
    • Ramocki, M.B.1    Zoghbi, H.Y.2
  • 13
    • 17944367990 scopus 로고    scopus 로고
    • Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABA(B) responses in mice lacking GABA(B(1))
    • Schuler V, et al. (2001) Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABA(B) responses in mice lacking GABA(B(1)). Neuron 31(1):47-58.
    • (2001) Neuron , vol.31 , Issue.1 , pp. 47-58
    • Schuler, V.1
  • 14
    • 0034948116 scopus 로고    scopus 로고
    • Epileptogenesis and enhanced prepulse inhibition in GABA (B1)-deficient mice
    • Prosser HM, et al. (2001) Epileptogenesis and enhanced prepulse inhibition in GABA (B1)-deficient mice. Mol Cell Neurosci 17(6):1059-1070.
    • (2001) Mol Cell Neurosci , vol.17 , Issue.6 , pp. 1059-1070
    • Prosser, H.M.1
  • 15
    • 3042834635 scopus 로고    scopus 로고
    • Redistribution of GABAB(1) protein and atypical GABAB responses in GABAB(2)-deficient mice
    • Gassmann M, et al. (2004) Redistribution of GABAB(1) protein and atypical GABAB responses in GABAB(2)-deficient mice. J Neurosci 24(27):6086-6097.
    • (2004) J Neurosci , vol.24 , Issue.27 , pp. 6086-6097
    • Gassmann, M.1
  • 16
    • 77958586336 scopus 로고    scopus 로고
    • Differential effects of GABAB receptor subtypes, gamma-hydroxybutyric Acid, and Baclofen on EEG activity and sleep regulation
    • Vienne J, Bettler B, Franken P, Tafti M (2010) Differential effects of GABAB receptor subtypes, gamma-hydroxybutyric Acid, and Baclofen on EEG activity and sleep regulation. J Neurosci 30(42):14194-14204.
    • (2010) J Neurosci , vol.30 , Issue.42 , pp. 14194-14204
    • Vienne, J.1    Bettler, B.2    Franken, P.3    Tafti, M.4
  • 17
    • 0030885942 scopus 로고    scopus 로고
    • Comparative in vivo and in vitro studies with the potent GABAB receptor antagonist, CGP 56999A
    • Badran S, Schmutz M, Olpe HR (1997) Comparative in vivo and in vitro studies with the potent GABAB receptor antagonist, CGP 56999A. Eur J Pharmacol 333(2-3): 135-142.
    • (1997) Eur J Pharmacol , vol.333 , Issue.2-3 , pp. 135-142
    • Badran, S.1    Schmutz, M.2    Olpe, H.R.3
  • 18
    • 0032567928 scopus 로고    scopus 로고
    • Activity-dependent scaling of quantal amplitude in neocortical neurons
    • Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391(6670): 892-896.
    • (1998) Nature , vol.391 , Issue.6670 , pp. 892-896
    • Turrigiano, G.G.1    Leslie, K.R.2    Desai, N.S.3    Rutherford, L.C.4    Nelson, S.B.5
  • 19
    • 0035923749 scopus 로고    scopus 로고
    • Inactivity produces increases in neurotransmitter release and synapse size
    • Murthy VN, Schikorski T, Stevens CF, Zhu Y (2001) Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32(4):673-682.
    • (2001) Neuron , vol.32 , Issue.4 , pp. 673-682
    • Murthy, V.N.1    Schikorski, T.2    Stevens, C.F.3    Zhu, Y.4
  • 20
    • 3042546515 scopus 로고    scopus 로고
    • Molecular structure and physiological functions of GABA(B) receptors
    • Bettler B, Kaupmann K, Mosbacher J, Gassmann M (2004) Molecular structure and physiological functions of GABA(B) receptors. Physiol Rev 84(3):835-867.
    • (2004) Physiol Rev , vol.84 , Issue.3 , pp. 835-867
    • Bettler, B.1    Kaupmann, K.2    Mosbacher, J.3    Gassmann, M.4
  • 21
    • 33646400548 scopus 로고    scopus 로고
    • Differential compartmentalization and distinct functions of GABAB receptor variants
    • Vigot R, et al. (2006) Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron 50(4):589-601.
    • (2006) Neuron , vol.50 , Issue.4 , pp. 589-601
    • Vigot, R.1
  • 22
    • 77955480826 scopus 로고    scopus 로고
    • Basal GABA regulates GABA(B)R conformation and release probability at single hippocampal synapses
    • Laviv T, et al. (2010) Basal GABA regulates GABA(B)R conformation and release probability at single hippocampal synapses. Neuron 67(2):253-267.
    • (2010) Neuron , vol.67 , Issue.2 , pp. 253-267
    • Laviv, T.1
  • 23
    • 0030919664 scopus 로고    scopus 로고
    • Heterogeneity of release probability, facilitation, and depletion at central synapses
    • Dobrunz LE, Stevens CF (1997) Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18(6):995-1008.
    • (1997) Neuron , vol.18 , Issue.6 , pp. 995-1008
    • Dobrunz, L.E.1    Stevens, C.F.2
  • 24
    • 84862830139 scopus 로고    scopus 로고
    • VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission
    • Raingo J, et al. (2012) VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission. Nat Neurosci 15(5):738-745.
    • (2012) Nat Neurosci , vol.15 , Issue.5 , pp. 738-745
    • Raingo, J.1
  • 25
    • 0033575749 scopus 로고    scopus 로고
    • A conformational switch in syntaxin during exocytosis: Role of munc18
    • Dulubova I, et al. (1999) A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J 18(16):4372-4382.
    • (1999) EMBO J , vol.18 , Issue.16 , pp. 4372-4382
    • Dulubova, I.1
  • 26
    • 84901780101 scopus 로고    scopus 로고
    • 2+ sensitivity
    • 2+ sensitivity. Neuron 82(5):1088-1100.
    • (2014) Neuron , vol.82 , Issue.5 , pp. 1088-1100
    • Acuna, C.1
  • 27
    • 84880690854 scopus 로고    scopus 로고
    • Tracking Ca2+-dependent and Ca2+-independent conformational transitions in syntaxin 1A during exocytosis in neuroendocrine cells
    • Greitzer-Antes D, et al. (2013) Tracking Ca2+-dependent and Ca2+-independent conformational transitions in syntaxin 1A during exocytosis in neuroendocrine cells. J Cell Sci 126(Pt 13):2914-2923.
    • (2013) J Cell Sci , vol.126 , Issue.13 , pp. 2914-2923
    • Greitzer-Antes, D.1
  • 28
    • 51749100843 scopus 로고    scopus 로고
    • Conformational switch of syntaxin-1 controls synaptic vesicle fusion
    • Gerber SH, et al. (2008) Conformational switch of syntaxin-1 controls synaptic vesicle fusion. Science 321(5895):1507-1510.
    • (2008) Science , vol.321 , Issue.5895 , pp. 1507-1510
    • Gerber, S.H.1
  • 29
    • 79956316684 scopus 로고    scopus 로고
    • Homeostatic synaptic plasticity through changes in presynaptic calcium influx
    • Zhao C, Dreosti E, Lagnado L (2011) Homeostatic synaptic plasticity through changes in presynaptic calcium influx. J Neurosci 31(20):7492-7496.
    • (2011) J Neurosci , vol.31 , Issue.20 , pp. 7492-7496
    • Zhao, C.1    Dreosti, E.2    Lagnado, L.3
  • 30
    • 80052363753 scopus 로고    scopus 로고
    • Compartmentalization of the GABAB receptor signaling complex is required for presynaptic inhibition at hippocampal synapses
    • Laviv T, et al. (2011) Compartmentalization of the GABAB receptor signaling complex is required for presynaptic inhibition at hippocampal synapses. JNeurosci 31(35):12523-12532.
    • (2011) JNeurosci , vol.31 , Issue.35 , pp. 12523-12532
    • Laviv, T.1
  • 31
    • 77957009779 scopus 로고    scopus 로고
    • Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain
    • Müller CS, et al. (2010) Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain. Proc Natl Acad Sci USA 107(34):14950-14957.
    • (2010) Proc Natl Acad Sci USA , vol.107 , Issue.34 , pp. 14950-14957
    • Müller, C.S.1
  • 32
    • 0030855997 scopus 로고    scopus 로고
    • A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex
    • Varela JA, et al. (1997) A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. J Neurosci 17(20): 7926-7940.
    • (1997) J Neurosci , vol.17 , Issue.20 , pp. 7926-7940
    • Varela, J.A.1
  • 33
    • 0034652231 scopus 로고    scopus 로고
    • Modulation of transmission during trains at a cerebellar synapse
    • Kreitzer AC, Regehr WG (2000) Modulation of transmission during trains at a cerebellar synapse. J Neurosci 20(4):1348-1357.
    • (2000) J Neurosci , vol.20 , Issue.4 , pp. 1348-1357
    • Kreitzer, A.C.1    Regehr, W.G.2
  • 34
    • 84872175082 scopus 로고    scopus 로고
    • Mossy fiber-CA3 synapses mediate homeostatic plasticity in mature hippocampal neurons
    • Lee KJ, et al. (2013) Mossy fiber-CA3 synapses mediate homeostatic plasticity in mature hippocampal neurons. Neuron 77(1):99-114.
    • (2013) Neuron , vol.77 , Issue.1 , pp. 99-114
    • Lee, K.J.1
  • 35
    • 45249121770 scopus 로고    scopus 로고
    • Synapse-specific adaptations to inactivity in hippocampal circuits achieve homeostatic gain control while dampening network reverberation
    • Kim J, Tsien RW (2008) Synapse-specific adaptations to inactivity in hippocampal circuits achieve homeostatic gain control while dampening network reverberation. Neuron 58(6):925-937.
    • (2008) Neuron , vol.58 , Issue.6 , pp. 925-937
    • Kim, J.1    Tsien, R.W.2
  • 36
    • 23944511446 scopus 로고    scopus 로고
    • Adaptation to synaptic inactivity in hippocampal neurons
    • Thiagarajan TC, Lindskog M, Tsien RW (2005) Adaptation to synaptic inactivity in hippocampal neurons. Neuron 47(5):725-737.
    • (2005) Neuron , vol.47 , Issue.5 , pp. 725-737
    • Thiagarajan, T.C.1    Lindskog, M.2    Tsien, R.W.3
  • 37
    • 48749086302 scopus 로고    scopus 로고
    • Local dendritic activity sets release probability at hippocampal synapses
    • Branco T, Staras K, Darcy KJ, Goda Y (2008) Local dendritic activity sets release probability at hippocampal synapses. Neuron 59(3):475-485.
    • (2008) Neuron , vol.59 , Issue.3 , pp. 475-485
    • Branco, T.1    Staras, K.2    Darcy, K.J.3    Goda, Y.4
  • 38
    • 0037191791 scopus 로고    scopus 로고
    • Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons
    • Burrone J, O'Byrne M, Murthy VN (2002) Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature 420(6914):414-418.
    • (2002) Nature , vol.420 , Issue.6914 , pp. 414-418
    • Burrone, J.1    O'Byrne, M.2    Murthy, V.N.3
  • 39
    • 33749518278 scopus 로고    scopus 로고
    • Temporal regulation of the expression locus of homeostatic plasticity
    • Wierenga CJ, Walsh MF, Turrigiano GG (2006) Temporal regulation of the expression locus of homeostatic plasticity. J Neurophysiol 96(4):2127-2133.
    • (2006) J Neurophysiol , vol.96 , Issue.4 , pp. 2127-2133
    • Wierenga, C.J.1    Walsh, M.F.2    Turrigiano, G.G.3
  • 40
    • 0035449939 scopus 로고    scopus 로고
    • Chronic blockade of glutamate receptors enhances presynaptic release and downregulates the interaction between synaptophysin-synaptobrevin-vesicle-associated membrane protein 2
    • Bacci A, et al. (2001) Chronic blockade of glutamate receptors enhances presynaptic release and downregulates the interaction between synaptophysin-synaptobrevin-vesicle-associated membrane protein 2. J Neurosci 21(17):6588-6596.
    • (2001) J Neurosci , vol.21 , Issue.17 , pp. 6588-6596
    • Bacci, A.1
  • 41
    • 78650230532 scopus 로고    scopus 로고
    • Local presynaptic activity gates homeostatic changes in presynaptic function driven by dendritic BDNF synthesis
    • Jakawich SK, et al. (2010) Local presynaptic activity gates homeostatic changes in presynaptic function driven by dendritic BDNF synthesis. Neuron 68(6):1143-1158.
    • (2010) Neuron , vol.68 , Issue.6 , pp. 1143-1158
    • Jakawich, S.K.1
  • 42
    • 84856259585 scopus 로고    scopus 로고
    • Heterogeneous reallocation of presynaptic efficacy in recurrent excitatory circuits adapting to inactivity
    • Mitra A, Mitra SS, Tsien RW (2012) Heterogeneous reallocation of presynaptic efficacy in recurrent excitatory circuits adapting to inactivity. Nat Neurosci 15(2):250-257.
    • (2012) Nat Neurosci , vol.15 , Issue.2 , pp. 250-257
    • Mitra, A.1    Mitra, S.S.2    Tsien, R.W.3
  • 43
    • 84884289719 scopus 로고    scopus 로고
    • A presynaptic ENaC channel drives homeostatic plasticity
    • Younger MA, Müller M, Tong A, Pym EC, Davis GW (2013) A presynaptic ENaC channel drives homeostatic plasticity. Neuron 79(6):1183-1196.
    • (2013) Neuron , vol.79 , Issue.6 , pp. 1183-1196
    • Younger, M.A.1    Müller, M.2    Tong, A.3    Pym, E.C.4    Davis, G.W.5
  • 44
    • 84905575091 scopus 로고    scopus 로고
    • Endostatin is a transsynaptic signal for homeostatic synaptic plasticity
    • Wang T, Hauswirth AG, Tong A, Dickman DK, Davis GW (2014) Endostatin is a transsynaptic signal for homeostatic synaptic plasticity. Neuron 83(3):616-629.
    • (2014) Neuron , vol.83 , Issue.3 , pp. 616-629
    • Wang, T.1    Hauswirth, A.G.2    Tong, A.3    Dickman, D.K.4    Davis, G.W.5
  • 45
    • 0028978597 scopus 로고
    • GABAB receptor-mediated presynaptic inhibition in guineapig hippocampus is caused by reduction of presynaptic Ca2+ influx
    • Wu LG, Saggau P (1995) GABAB receptor-mediated presynaptic inhibition in guineapig hippocampus is caused by reduction of presynaptic Ca2+ influx. J Physiol 485(Pt 3): 649-657.
    • (1995) J Physiol , vol.485 , Issue.3 , pp. 649-657
    • Wu, L.G.1    Saggau, P.2
  • 46
    • 70450177166 scopus 로고    scopus 로고
    • The schizophrenia susceptibility gene dysbindin controls synaptic homeostasis
    • Dickman DK, Davis GW (2009) The schizophrenia susceptibility gene dysbindin controls synaptic homeostasis. Science 326(5956):1127-1130.
    • (2009) Science , vol.326 , Issue.5956 , pp. 1127-1130
    • Dickman, D.K.1    Davis, G.W.2
  • 47
    • 33751019274 scopus 로고    scopus 로고
    • Mechanisms underlying the rapid induction and sustained expression of synaptic homeostasis
    • Frank CA, Kennedy MJ, Goold CP, Marek KW, Davis GW (2006) Mechanisms underlying the rapid induction and sustained expression of synaptic homeostasis. Neuron 52(4): 663-677.
    • (2006) Neuron , vol.52 , Issue.4 , pp. 663-677
    • Frank, C.A.1    Kennedy, M.J.2    Goold, C.P.3    Marek, K.W.4    Davis, G.W.5
  • 48
    • 84862701054 scopus 로고    scopus 로고
    • 2+ influx achieves homeostatic potentiation of neurotransmitter release
    • 2+ influx achieves homeostatic potentiation of neurotransmitter release. Curr Biol 22(12): 1102-1108.
    • (2012) Curr Biol , vol.22 , Issue.12 , pp. 1102-1108
    • Müller, M.1    Davis, G.W.2
  • 49
    • 84862068720 scopus 로고    scopus 로고
    • Regulation of neuronal GABA(B) receptor functions by subunit composition
    • Gassmann M, Bettler B (2012) Regulation of neuronal GABA(B) receptor functions by subunit composition. Nat Rev Neurosci 13(6):380-394.
    • (2012) Nat Rev Neurosci , vol.13 , Issue.6 , pp. 380-394
    • Gassmann, M.1    Bettler, B.2
  • 50
    • 9644303173 scopus 로고    scopus 로고
    • Enhancement of synaptic plasticity through chronically reduced Ca2+ flux during uncorrelated activity
    • Slutsky I, Sadeghpour S, Li B, Liu G (2004) Enhancement of synaptic plasticity through chronically reduced Ca2+ flux during uncorrelated activity. Neuron 44(5): 835-849.
    • (2004) Neuron , vol.44 , Issue.5 , pp. 835-849
    • Slutsky, I.1    Sadeghpour, S.2    Li, B.3    Liu, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.