메뉴 건너뛰기




Volumn 9, Issue 1, 2015, Pages

Uncovering distinct protein-network topologies in heterogeneous cell populations

Author keywords

Bayesian analysis; Cluster analysis; Intercellular variability; Network analysis; Protein networks; Reverse engineering; Unmixing

Indexed keywords

EPIDERMAL GROWTH FACTOR; MITOGEN ACTIVATED PROTEIN KINASE; NERVE GROWTH FACTOR; RAF PROTEIN;

EID: 84933499980     PISSN: None     EISSN: 17520509     Source Type: Journal    
DOI: 10.1186/s12918-015-0170-2     Document Type: Article
Times cited : (7)

References (40)
  • 1
    • 77952956167 scopus 로고    scopus 로고
    • Decoding signalling networks by mass spectrometry-based proteomics
    • Choudhary C, Mann M. Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol. 2010; 11(6):427-39. 10.1038/nrm2900 .
    • (2010) Nat Rev Mol Cell Biol. , vol.11 , Issue.6 , pp. 427-439
    • Choudhary, C.1    Mann, M.2
  • 3
    • 46249105330 scopus 로고    scopus 로고
    • Single-cell phospho-protein analysis by flow cytometry
    • Schulz KR, Danna EA, Krutzik PO, Nolan GP. Single-cell phospho-protein analysis by flow cytometry. Curr Protoc Immunol. 2012; Chapter 8:8-17120. 10.1002/0471142735.im0817s96 .
    • (2012) Curr Protoc Immunol. , vol.CHAPTER 8 , pp. 8-17120
    • Schulz, K.R.1    Danna, E.A.2    Krutzik, P.O.3    Nolan, G.P.4
  • 5
    • 84866096861 scopus 로고    scopus 로고
    • Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators
    • Bodenmiller B, Zunder ER, Finck R, Chen TJ, Savig ES, Bruggner RV, et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol. 2012; 30(9):858-67. 10.1038/nbt.2317 .
    • (2012) Nat Biotechnol. , vol.30 , Issue.9 , pp. 858-867
    • Bodenmiller, B.1    Zunder, E.R.2    Finck, R.3    Chen, T.J.4    Savig, E.S.5    Bruggner, R.V.6
  • 6
    • 38449097642 scopus 로고    scopus 로고
    • Fluorescence detection of protein clusters in individual cells and tissue sections by using toponome imaging system: sample preparation and measuring procedures
    • Friedenberger M, Bode M, Krusche A, Schubert W. Fluorescence detection of protein clusters in individual cells and tissue sections by using toponome imaging system: sample preparation and measuring procedures. Nat Protoc. 2007; 2(9):2285-94. 10.1038/nprot.2007.320 .
    • (2007) Nat Protoc. , vol.2 , Issue.9 , pp. 2285-2294
    • Friedenberger, M.1    Bode, M.2    Krusche, A.3    Schubert, W.4
  • 7
    • 33749867157 scopus 로고    scopus 로고
    • Analyzing proteome topology and function by automated multidimensional fluorescence microscopy
    • Schubert W, Bonnekoh B, Pommer AJ, Philipsen L, Böckelmann R, Malykh Y, et al. Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat Biotechnol. 2006; 24(10):1270-8. 10.1038/nbt1250 .
    • (2006) Nat Biotechnol. , vol.24 , Issue.10 , pp. 1270-1278
    • Schubert, W.1    Bonnekoh, B.2    Pommer, A.J.3    Philipsen, L.4    Böckelmann, R.5    Malykh, Y.6
  • 9
    • 0037119587 scopus 로고    scopus 로고
    • Stochastic gene expression in a single cell
    • Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a single cell. Science. 2002; 297(5584):1183-6. 10.1126/science.1070919 .
    • (2002) Science. , vol.297 , Issue.5584 , pp. 1183-1186
    • Elowitz, M.B.1    Levine, A.J.2    Siggia, E.D.3    Swain, P.S.4
  • 11
    • 84861443923 scopus 로고    scopus 로고
    • Moment-based inference predicts bimodality in transient gene expression
    • Zechner C, Ruess J, Krenn P, Pelet S, Peter M, Lygeros J, et al. Moment-based inference predicts bimodality in transient gene expression. Proc Natl Acad Sci U S A. 2012; 109(21):8340-5. 10.1073/pnas.1200161109 .
    • (2012) Proc Natl Acad Sci U S A. , vol.109 , Issue.21 , pp. 8340-8345
    • Zechner, C.1    Ruess, J.2    Krenn, P.3    Pelet, S.4    Peter, M.5    Lygeros, J.6
  • 12
    • 84895072562 scopus 로고    scopus 로고
    • Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings
    • Zechner C, Unger M, Pelet S, Peter M, Koeppl H. Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings. Nat Methods. 2014; 11(2):197-202. 10.1038/nmeth.2794 .
    • (2014) Nat Methods. , vol.11 , Issue.2 , pp. 197-202
    • Zechner, C.1    Unger, M.2    Pelet, S.3    Peter, M.4    Koeppl, H.5
  • 13
    • 3242683662 scopus 로고    scopus 로고
    • Single cell profiling of potentiated phospho-protein networks in cancer cells.
    • Irish JM, Hovland R, Krutzik PO, Perez OD, Bruserud Ø, Gjertsen BT, et al. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell. 2004; 118(2):217-8. 10.1016/j.cell.2004.06.028 .
    • (2004) Cell , vol.118 , Issue.2 , pp. 217-218
    • Irish, J.M.1    Hovland, R.2    Krutzik, P.O.3    Perez, O.D.4    Bruserud, Ø.5    Gjertsen, B.T.6
  • 14
    • 84860214990 scopus 로고    scopus 로고
    • Intra-tumour heterogeneity: a looking glass for cancer?
    • Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer?Nat Rev Cancer. 2012; 12(5):323-4. 10.1038/nrc3261 .
    • (2012) Nat Rev Cancer. , vol.12 , Issue.5 , pp. 323-324
    • Marusyk, A.1    Almendro, V.2    Polyak, K.3
  • 15
    • 84905460441 scopus 로고    scopus 로고
    • ODE constrained mixture modelling: a method for unraveling subpopulation structures and dynamics
    • Hasenauer J, Hasenauer C, Hucho T, Theis FJ. ODE constrained mixture modelling: a method for unraveling subpopulation structures and dynamics. PLoS Comput Biol. 2014; 10(7):1003686. 10.1371/journal.pcbi.1003686 .
    • (2014) PLoS Comput Biol. , vol.10 , Issue.7 , pp. 1003686
    • Hasenauer, J.1    Hasenauer, C.2    Hucho, T.3    Theis, F.J.4
  • 16
    • 38349043669 scopus 로고    scopus 로고
    • High-content single-cell drug screening with phosphospecific flow cytometry
    • Krutzik PO, Crane JM, Clutter MR, Nolan GP. High-content single-cell drug screening with phosphospecific flow cytometry. Nat Chem Biol. 2008; 4(2):132-42. 10.1038/nchembio.2007.59 .
    • (2008) Nat Chem Biol. , vol.4 , Issue.2 , pp. 132-142
    • Krutzik, P.O.1    Crane, J.M.2    Clutter, M.R.3    Nolan, G.P.4
  • 17
    • 18544372424 scopus 로고    scopus 로고
    • Resolving and classifying haematopoietic bone-marrow cell populations by multi-dimensional analysis of flow-cytometry data
    • Zamir E, Geiger B, Cohen N, Kam Z, Katz BZ. Resolving and classifying haematopoietic bone-marrow cell populations by multi-dimensional analysis of flow-cytometry data. Br J Haematol. 2005; 129(3):420-31. 10.1111/j.1365-2141.2005.05471.x .
    • (2005) Br J Haematol. , vol.129 , Issue.3 , pp. 420-431
    • Zamir, E.1    Geiger, B.2    Cohen, N.3    Kam, Z.4    Katz, B.Z.5
  • 19
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyze expression data. J Comput Biol. 2000; 7(3-4):601-20.
    • (2000) J Comput Biol , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 21
    • 84871033410 scopus 로고    scopus 로고
    • Nonparametric Bayesian Networks (with discussion)
    • In: Bernardo JM, Bayarri MJ, Berger JO, Dawid AP, Heckerman D, Smith AFM, West M, editors. Oxford, UK: Oxford University Press
    • Ickstadt K, Bornkamp B, Grzegorczyk M, Wieczorek J, Sheriff MR, Grecco HE, et al. Nonparametric Bayesian Networks (with discussion) In: Bernardo JM, Bayarri MJ, Berger JO, Dawid AP, Heckerman D, Smith AFM, West M, editors. Bayesian Statistics 9. Oxford, UK: Oxford University Press: 2011.
    • (2011) Bayesian Statistics , vol.9
    • Ickstadt, K.1    Bornkamp, B.2    Grzegorczyk, M.3    Wieczorek, J.4    Sheriff, M.R.5    Grecco, H.E.6
  • 22
    • 17644412264 scopus 로고    scopus 로고
    • Bayesian network analysis of signaling networks: a primer
    • Pe'er D. Bayesian network analysis of signaling networks: a primer. Sci STKE. 2005; 2005(281):4. 10.1126/stke.2812005pl4 .
    • (2005) Sci STKE. , vol.2005 , Issue.281 , pp. 4
    • Pe'er, D.1
  • 23
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • Sachs K, Perez O, Pe'er D, Lauffenburger DA, Nolan GP. Causal protein-signaling networks derived from multiparameter single-cell data. Science. 2005; 308(5721):523-9. 10.1126/science.1105809 .
    • (2005) Science. , vol.308 , Issue.5721 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 24
    • 17344362384 scopus 로고    scopus 로고
    • Prediction and validation of the distinct dynamics of transient and sustained Erk activation
    • Sasagawa S, Ozaki Y. -i, Fujita K, Kuroda S. Prediction and validation of the distinct dynamics of transient and sustained Erk activation. Nat Cell Biol. 2005; 7(4):365-73. 10.1038/ncb1233 .
    • (2005) Nat Cell Biol. , vol.7 , Issue.4 , pp. 365-373
    • Sasagawa, S.1    Ozaki, Y.-I.2    Fujita, K.3    Kuroda, S.4
  • 25
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Ferguson TS. A Bayesian analysis of some nonparametric problems. Ann Stat. 1973; 1:209-30.
    • (1973) Ann Stat , vol.1 , pp. 209-230
    • Ferguson, T.S.1
  • 26
    • 34249673263 scopus 로고    scopus 로고
    • Bayesian finite mixtures with an unknown number of components
    • Nobile A, Fearnside A. Bayesian finite mixtures with an unknown number of components. Stat Comput. 2007; 17:147-62.
    • (2007) Stat Comput , vol.17 , pp. 147-162
    • Nobile, A.1    Fearnside, A.2
  • 27
    • 51749112494 scopus 로고    scopus 로고
    • Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler
    • Grzegorczyk M, Husmeier D, Edwards KD, Ghazal P, Millar AJ. Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler. Bioinformatics. 2008; 24(18):2071-078. 10.1093/bioinformatics/btn367 .
    • (2008) Bioinformatics. , vol.24 , Issue.18 , pp. 2071-2078
    • Grzegorczyk, M.1    Husmeier, D.2    Edwards, K.D.3    Ghazal, P.4    Millar, A.J.5
  • 28
    • 51249104199 scopus 로고
    • A model of self-activated memory for evidential reasoning
    • Irvine, CA: University of California
    • Pearl J. A model of self-activated memory for evidential reasoning. In: Proceedings of the 7th Conference of the Cognitive Science Society. Irvine, CA: University of California: 1985. p. 329-34.
    • (1985) Proceedings of the 7th Conference of the Cognitive Science Society , pp. 329-334
    • Pearl, J.1
  • 29
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • Madigan D, York J. Bayesian graphical models for discrete data. Int Stat Rev. 1995; 63:215-32.
    • (1995) Int Stat Rev , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 30
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks
    • Friedman N, Koller D. Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks. Mach Learn. 2003; 50:95-125. 10.1023/A:1020249912095 .
    • (2003) Mach Learn. , vol.50 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 31
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture models
    • Neal RM. Markov chain sampling methods for Dirichlet process mixture models. J Comput Graphical Stat. 2000; 9:249-65.
    • (2000) J Comput Graphical Stat , vol.9 , pp. 249-265
    • Neal, R.M.1
  • 32
    • 77954199057 scopus 로고    scopus 로고
    • Improved criteria for clustering based on the posterior similarity matrix
    • Fritsch A, Ickstadt K. Improved criteria for clustering based on the posterior similarity matrix. Bayesian Anal. 2009; 4:367-92. 10.1214/09-BA414 .
    • (2009) Bayesian Anal. , vol.4 , pp. 367-392
    • Fritsch, A.1    Ickstadt, K.2
  • 34
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • Oakland, California: University of California Press
    • MacQueen JB. Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. Oakland, California: University of California Press: 1967. p. 281-97.
    • (1967) Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability , pp. 281-297
    • MacQueen, J.B.1
  • 35
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • Ward JH. Hierarchical grouping to optimize an objective function. J Am Stat Assoc. 1963; 58:236-44.
    • (1963) J Am Stat Assoc , vol.58 , pp. 236-244
    • Ward, J.H.1
  • 36
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw PJ. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987; 20:53-65. 10.1016/0377-0427(87)90125-7 .
    • (1987) J Comput Appl Math. , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 37
    • 0037205044 scopus 로고    scopus 로고
    • Signaling pathways for PC-12 cell differentiation: making the right connections
    • Vaudry D, Stork PJS, Lazarovici P, Eiden LE. Signaling pathways for PC-12 cell differentiation: making the right connections. Science. 2002; 296(5573):1648-9. 10.1126/science.1071552 .
    • (2002) Science. , vol.296 , Issue.5573 , pp. 1648-1649
    • Vaudry, D.1    Stork, P.J.S.2    Lazarovici, P.3    Eiden, L.E.4
  • 38
    • 33847355217 scopus 로고    scopus 로고
    • Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate
    • Santos SDM, Verveer PJ, Bastiaens PIH. Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol. 2007; 9(3):324-0. 10.1038/ncb1543 .
    • (2007) Nat Cell Biol. , vol.9 , Issue.3 , pp. 324-330
    • Santos, S.D.M.1    Verveer, P.J.2    Bastiaens, P.I.H.3
  • 39
    • 84934438616 scopus 로고    scopus 로고
    • An introduction to Gaussian Bayesian networks
    • Grzegorczyk M. An introduction to Gaussian Bayesian networks. Methods Mol Biol. 2010; 662:121-47.
    • (2010) Methods Mol Biol , vol.662 , pp. 121-147
    • Grzegorczyk, M.1
  • 40
    • 0002095306 scopus 로고
    • Equivalence and synthesis of causal models
    • In: Bonissone P, Henrion M, Kanal LN, Lemmer JF, editors. Cambridge, MA: Elsevier Science Publishers
    • Verma T, Pearl J. Equivalence and synthesis of causal models. In: Bonissone P, Henrion M, Kanal LN, Lemmer JF, editors. Uncertainty in Artificial Intelligence 6. Cambridge, MA: Elsevier Science Publishers: 1991. p. 225-68.
    • (1991) Uncertainty in Artificial Intelligence , vol.6 , pp. 225-268
    • Verma, T.1    Pearl, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.