메뉴 건너뛰기




Volumn 9, Issue 11, 2014, Pages

How Difficult Is Inference of Mammalian Causal Gene Regulatory Networks?

Author keywords

[No Author keywords available]

Indexed keywords

CELL POPULATION; DEVELOPMENTAL STAGE; DIAGNOSTIC TEST ACCURACY STUDY; EMBRYO; EXPERIMENTAL MODEL; GENE DISRUPTION; GENE EXPRESSION; GENE EXPRESSION PROFILING; GENE EXPRESSION REGULATION; GENE OVEREXPRESSION; GENE REGULATORY NETWORK; INFORMATION PROCESSING; KNOCKOUT GENE; MAMMAL; ORGANOGENESIS; SENSITIVITY AND SPECIFICITY; ANIMAL; EMBRYOLOGY; HEART; HEART MUSCLE; METABOLISM; MOUSE; PROTEIN PROTEIN INTERACTION; SIGNAL TRANSDUCTION; TOOTH;

EID: 84932093797     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0111661     Document Type: Article
Times cited : (19)

References (33)
  • 2
    • 84873159388 scopus 로고    scopus 로고
    • Application of a systems approach to study developmental gene regulation
    • Ho JWK (2012) Application of a systems approach to study developmental gene regulation. Biophysical Reviews 4: 245-253.
    • (2012) Biophysical Reviews , vol.4 , pp. 245-253
    • Ho, J.W.K.1
  • 3
    • 78650362376 scopus 로고    scopus 로고
    • Emerging properties of animal gene regulatory networks
    • Davidson EH (2010) Emerging properties of animal gene regulatory networks. Nature 468: 911-920.
    • (2010) Nature , vol.468 , pp. 911-920
    • Davidson, E.H.1
  • 5
    • 0037079054 scopus 로고    scopus 로고
    • Computational systems biology
    • Kitano H (2002) Computational systems biology. Nature 420: 206-210.
    • (2002) Nature , vol.420 , pp. 206-210
    • Kitano, H.1
  • 9
    • 84883812062 scopus 로고    scopus 로고
    • Network link prediction by global silencing of indirect correlations
    • Barzel B, Barabsi AL (2013) Network link prediction by global silencing of indirect correlations. Nature Biotechnology 31: 720725.
    • (2013) Nature Biotechnology , vol.31 , pp. 720725
    • Barzel, B.1    Barabsi, A.L.2
  • 10
    • 84878605343 scopus 로고    scopus 로고
    • Passing messages between biological networks to refine predicted interactions
    • Glass K, Huttenhower C, Quackenbush J, Yuan GC (2013) Passing messages between biological networks to refine predicted interactions. PLoS ONE 8: E64832.
    • (2013) PLoS ONE , vol.8 , pp. e64832
    • Glass, K.1    Huttenhower, C.2    Quackenbush, J.3    Yuan, G.C.4
  • 11
    • 77951641247 scopus 로고    scopus 로고
    • Predicting causal effects in large-scale systems from observational data
    • Maathuis MH, Colombo D, Kalisch M, Bhlmann P (2010) Predicting causal effects in large-scale systems from observational data. Nature Methods 7: 247248.
    • (2010) Nature Methods , vol.7 , pp. 247248
    • Maathuis, M.H.1    Colombo, D.2    Kalisch, M.3    Bhlmann, P.4
  • 14
    • 0036138322 scopus 로고    scopus 로고
    • How to reconstruct a large genetic network from n gene perturbations in fewer than n2 easy steps
    • Wagner A (2001) How to reconstruct a large genetic network from n gene perturbations in fewer than n2 easy steps. Bioinformatics 17: 11831197.
    • (2001) Bioinformatics , vol.17 , pp. 11831197
    • Wagner, A.1
  • 15
    • 27744489138 scopus 로고    scopus 로고
    • Non-transcriptional pathway features reconstructed from secondary effects of RNA interference
    • Markowetz F, Bloch J, Spang R (2005) Non-transcriptional pathway features reconstructed from secondary effects of rna interference. Bioinformatics 21: 40264032.
    • (2005) Bioinformatics , vol.21 , pp. 40264032
    • Markowetz, F.1    Bloch, J.2    Spang, R.3
  • 16
    • 66349107768 scopus 로고    scopus 로고
    • Nested effects models for learning signaling networks from perturbation data
    • Frhlich H, Tresch A, Beibarth T (2009) Nested effects models for learning signaling networks from perturbation data. Biom J 51: 304323.
    • (2009) Biom J , vol.51 , pp. 304323
    • Frhlich, H.1    Tresch, A.2    Beibarth, T.3
  • 17
    • 71749088202 scopus 로고    scopus 로고
    • Deterministic effects propagation networks for reconstructing protein signaling networks from multiple interventions
    • Frhlich H, Sahin z, Arlt D, Bender C, Beibarth T (2009) Deterministic effects propagation networks for reconstructing protein signaling networks from multiple interventions. BMC Bioinformatics 10: 322.
    • (2009) BMC Bioinformatics , vol.10 , pp. 322
    • Frhlich, H.1    Sahin, Z.2    Arlt, D.3    Bender, C.4    Beibarth, T.5
  • 18
    • 78149429509 scopus 로고    scopus 로고
    • From knockouts to networks: Establishing direct cause-effect relationships through graph analysis
    • Pinna A, Soranzo N, De La Fuente A (2010) From knockouts to networks: Establishing direct cause-effect relationships through graph analysis. PLoS ONE 5: E12912.
    • (2010) PLoS ONE , vol.5 , pp. e12912
    • Pinna, A.1    Soranzo, N.2    De La Fuente, A.3
  • 19
    • 77958570788 scopus 로고    scopus 로고
    • Inferring regulatory networks from expression data using tree-based methods
    • Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P (2010) Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 5: E12776.
    • (2010) PLoS ONE , vol.5 , pp. e12776
    • Huynh-Thu, V.A.1    Irrthum, A.2    Wehenkel, L.3    Geurts, P.4
  • 20
    • 33947305781 scopus 로고    scopus 로고
    • ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, et al. (2006) ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7 Suppl 1: S7.
    • (2006) BMC Bioinformatics , vol.7 , pp. 7
    • Margolin, A.A.1    Nemenman, I.2    Basso, K.3    Wiggins, C.4    Stolovitzky, G.5
  • 21
    • 33644680809 scopus 로고    scopus 로고
    • Building the mammalian heart from two sources of myocardial cells
    • Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nature Reviews Genetics 6: 826837.
    • (2005) Nature Reviews Genetics , vol.6 , pp. 826837
    • Buckingham, M.1    Meilhac, S.2    Zaffran, S.3
  • 22
    • 84902160817 scopus 로고    scopus 로고
    • Inference and validation of predictive gene networks from biomedical literature and gene expression data
    • Olsen C, Fleming K, Prendergast N, Rubio R, Emmert-Streib F, et al. (2014) Inference and validation of predictive gene networks from biomedical literature and gene expression data. Genomics 103: 329336.
    • (2014) Genomics , vol.103 , pp. 329336
    • Olsen, C.1    Fleming, K.2    Prendergast, N.3    Rubio, R.4    Emmert-Streib, F.5
  • 24
    • 33644872577 scopus 로고    scopus 로고
    • Limma: Linear models for microarray data
    • In Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W, editors New York Springer.
    • Smyth GK (2005) Limma: Linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W, editors, Bioinformatics and Computational Biology Solutions Using R and Bioconductor, New York: Springer. pp. 397-420.
    • (2005) Bioinformatics and Computational Biology Solutions Using R and Bioconductor , pp. 397-420
    • Smyth, G.K.1
  • 25
    • 59949086432 scopus 로고    scopus 로고
    • Minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information
    • Meyer PE, Lafitte F, Bontempi G (2008) minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics 9: 461.
    • (2008) BMC Bioinformatics , vol.9 , pp. 461
    • Meyer, P.E.1    Lafitte, F.2    Bontempi, G.3
  • 27
    • 82055171942 scopus 로고    scopus 로고
    • IRefR: An R package to manipulate the iRefIndex consolidated protein interaction database
    • Mora A, Donaldson IM (2011) iRefR: An R package to manipulate the iRefIndex consolidated protein interaction database. BMC Bioinformatics 12: 455.
    • (2011) BMC Bioinformatics , vol.12 , pp. 455
    • Mora, A.1    Donaldson, I.M.2
  • 28
    • 43349094507 scopus 로고    scopus 로고
    • The igraph software package for complex network research
    • Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJournal Complex Systems: 1695.
    • (2006) InterJournal Complex Systems , vol.1695
    • Csardi, G.1    Nepusz, T.2
  • 30
    • 10744227070 scopus 로고    scopus 로고
    • Control of pancreas and liver gene expression by hnf transcription factors
    • Odom DT (2004) Control of pancreas and liver gene expression by hnf transcription factors. Science 303: 13781381.
    • (2004) Science , vol.303 , pp. 13781381
    • Odom, D.T.1
  • 31
    • 0038010034 scopus 로고    scopus 로고
    • Tissue-specific gene expression and ecdysone-regulated genomic networks in drosophila
    • Li TR, White KP (2003) Tissue-specific gene expression and ecdysone-regulated genomic networks in drosophila. Developmental Cell 5: 5972.
    • (2003) Developmental Cell , vol.5 , pp. 5972
    • Li, T.R.1    White, K.P.2
  • 32
    • 84876097557 scopus 로고    scopus 로고
    • ArrayExpress update - Trends in database growth and links to data analysis tools
    • Rustici G, Kolesnikov N, Brandizi M, Burdett T, Dylag M, et al. (2013) ArrayExpress update - trends in database growth and links to data analysis tools. Nucleic Acids Research 41: D987-D990.
    • (2013) Nucleic Acids Research , vol.41 , pp. D987-D990
    • Rustici, G.1    Kolesnikov, N.2    Brandizi, M.3    Burdett, T.4    Dylag, M.5
  • 33
    • 0036081355 scopus 로고    scopus 로고
    • Gene Expression Omnibus: NCBI gene expression and hybridization array data repository
    • Edgar R (2002) Gene Expression Omnibus: NCBI gEnE expression and hybridization array data repository. Nucleic Acids Research 30: 207210.
    • (2002) Nucleic Acids Research , vol.30 , pp. 207210
    • Edgar, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.