-
1
-
-
84896791554
-
Image classification using multiscale information fusion based on saliency driven nonlinear diffusion filtering
-
W. Hu, R. Hu, N. Xie, H. Ling, and S. Maybank Image classification using multiscale information fusion based on saliency driven nonlinear diffusion filtering IEEE Trans. Image Process.: Publ. IEEE Signal Process. Soc. 23 4 2014 1513 1526
-
(2014)
IEEE Trans. Image Process.: Publ. IEEE Signal Process. Soc.
, vol.23
, Issue.4
, pp. 1513-1526
-
-
Hu, W.1
Hu, R.2
Xie, N.3
Ling, H.4
Maybank, S.5
-
2
-
-
84903266238
-
Learning object-to-class kernels for scene classification
-
L. Zhang, X. Zhen, and L. Shao Learning object-to-class kernels for scene classification IEEE Trans. Image Process. 23 8 2014 3241 3253
-
(2014)
IEEE Trans. Image Process.
, vol.23
, Issue.8
, pp. 3241-3253
-
-
Zhang, L.1
Zhen, X.2
Shao, L.3
-
3
-
-
84911445359
-
Submodular object recognition
-
F. Zhu, Z. Jiang, L. Shao, Submodular object recognition, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2014, pp. 2457-2464 doi:10.1109/CVPR.2014.315.
-
(2014)
IEEE Conference on Computer Vision and Pattern Recognition, CVPR
, pp. 2457-2464
-
-
Zhu, F.1
Jiang, Z.2
Shao, L.3
-
4
-
-
84867868851
-
Domain adaptive dictionary learning
-
Q. Qiu, V.M. Patel, P. Turaga, R. Chellappa, Domain adaptive dictionary learning, in: Computer Vision - ECCV, 2012, pp. 631-645.
-
(2012)
Computer Vision - ECCV
, pp. 631-645
-
-
Qiu, Q.1
Patel, V.M.2
Turaga, P.3
Chellappa, R.4
-
5
-
-
80053126879
-
Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition
-
P. Turaga, A. Veeraraghavan, A. Srivastava, and R. Chellappa Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition IEEE Trans. Pattern Anal. Mach. Intell. 33 11 2011 2273 2286
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.33
, Issue.11
, pp. 2273-2286
-
-
Turaga, P.1
Veeraraghavan, A.2
Srivastava, A.3
Chellappa, R.4
-
6
-
-
84901854077
-
Spatially-constrained similarity measure for large-scale object retrieval
-
X. Shen, Z. Lin, J. Brandt, and Y. Wu Spatially-constrained similarity measure for large-scale object retrieval IEEE Trans. Pattern Anal. Mach. Intell. 36 6 2014 1229 1241 10.1109/TPAMI.2013.237
-
(2014)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.36
, Issue.6
, pp. 1229-1241
-
-
Shen, X.1
Lin, Z.2
Brandt, J.3
Wu, Y.4
-
7
-
-
70450181250
-
Multi-class active learning for image classification
-
A.J. Joshi, F. Porikli, N. Papanikolopoulos, Multi-class active learning for image classification, in: IEEE Conference on Computer Vision and Pattern Recognition, 2009, CVPR 2009, 2009, pp. 2372-2379.
-
(2009)
IEEE Conference on Computer Vision and Pattern Recognition, 2009, CVPR 2009
, pp. 2372-2379
-
-
Joshi, A.J.1
Porikli, F.2
Papanikolopoulos, N.3
-
8
-
-
84900803418
-
An efficient weighted lagrangian twin support vector machine for imbalanced data classification
-
Y.-H. Shao, W.-J. Chen, J.-J. Zhang, Z. Wang, and N.-Y. Deng An efficient weighted lagrangian twin support vector machine for imbalanced data classification Pattern Recognit. 47 9 2014 3158 3167
-
(2014)
Pattern Recognit.
, vol.47
, Issue.9
, pp. 3158-3167
-
-
Shao, Y.-H.1
Chen, W.-J.2
Zhang, J.-J.3
Wang, Z.4
Deng, N.-Y.5
-
9
-
-
84894355969
-
Primal explicit max margin feature selection for nonlinear support vector machines
-
A. Tayal, T.F. Coleman, and Y. Li Primal explicit max margin feature selection for nonlinear support vector machines Pattern Recognit. 47 6 2014 2153 2164
-
(2014)
Pattern Recognit.
, vol.47
, Issue.6
, pp. 2153-2164
-
-
Tayal, A.1
Coleman, T.F.2
Li, Y.3
-
10
-
-
84866666336
-
Submodular dictionary learning for sparse coding
-
IEEE, Washington, DC, USA
-
Z. Jiang, G. Zhang, L.S. Davis, Submodular dictionary learning for sparse coding, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Washington, DC, USA, 2012, pp. 3418-3425.
-
(2012)
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 3418-3425
-
-
Jiang, Z.1
Zhang, G.2
Davis, L.S.3
-
11
-
-
84902279254
-
Weakly-supervised cross-domain dictionary learning for visual recognition
-
F. Zhu, and L. Shao Weakly-supervised cross-domain dictionary learning for visual recognition Int. J. Comput. Vis. 109 1-2 2014 42 59
-
(2014)
Int. J. Comput. Vis.
, vol.109
, Issue.1-2
, pp. 42-59
-
-
Zhu, F.1
Shao, L.2
-
12
-
-
84903274914
-
Feature learning for image classification via multiobjective genetic programming
-
L. Shao, L. Liu, and X. Li Feature learning for image classification via multiobjective genetic programming IEEE Trans. Neural Netw. Learn. Syst. 25 7 2014 1359 1371
-
(2014)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.25
, Issue.7
, pp. 1359-1371
-
-
Shao, L.1
Liu, L.2
Li, X.3
-
13
-
-
84910597067
-
Learning deep and wide: A spectral method for learning deep networks
-
L. Shao, D. Wu, X. Li, Learning deep and wide: a spectral method for learning deep networks, IEEE Trans. Neural Netw. Learn. Syst. 25 (12) (2014) 2303-2308.
-
(2014)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.25
, Issue.12
, pp. 2303-2308
-
-
Shao, L.1
Wu, D.2
Li, X.3
-
14
-
-
33846487387
-
Multi-task learning for classification with Dirichlet process priors
-
Y. Xue, X. Liao, L. Carlin, B. Krishnapuram, Multi-task learning for classification with Dirichlet process priors, J. Mach. Learn. Res. 8 (2007) 35-63.
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 35-63
-
-
Xue, Y.1
Liao, X.2
Carlin, L.3
Krishnapuram, B.4
-
15
-
-
0031189914
-
Multitask learning
-
R. Caruanal Multitask learning Mach. Learn. 28 1 1997 41 75 10.1023/A:1007379606734
-
(1997)
Mach. Learn.
, vol.28
, Issue.1
, pp. 41-75
-
-
Caruanal, R.1
-
16
-
-
0003901612
-
Learning to learn: Introduction
-
S. Thrun, Learning to learn: introduction, in: Learning To Learn.
-
Learning to Learn
-
-
Thrun, S.1
-
17
-
-
14344277592
-
A model of inductive bias learning
-
J. Baxter, A model of inductive bias learning, J. Artif. Intell. Res. 12(1-C12) (2000) 149-198.
-
(2000)
J. Artif. Intell. Res.
, vol.12
, Issue.1 C12
, pp. 149-198
-
-
Baxter, J.1
-
22
-
-
31844442664
-
Learning gaussian processes from multiple tasks
-
K. Yu, V. Tresp, A. Schwaighofer, Learning gaussian processes from multiple tasks, in: Proceedings of the 22nd International Conference on Machine Learning, 2005, pp. 1012-1019.
-
(2005)
Proceedings of the 22nd International Conference on Machine Learning
, pp. 1012-1019
-
-
Yu, K.1
Tresp, V.2
Schwaighofer, A.3
-
23
-
-
34547989609
-
Learning a meta-level prior for feature relevance from multiple related tasks
-
S.-I. Lee, V. Chatalbashev, D. Vickrey, D. Koller, Learning a meta-level prior for feature relevance from multiple related tasks, in: Proceedings of the 24th International Conference on Machine Learning, 2007, pp. 489-496.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning
, pp. 489-496
-
-
Lee, S.-I.1
Chatalbashev, V.2
Vickrey, D.3
Koller, D.4
-
24
-
-
79551660140
-
Multitask sparsity via maximum entropy discrimination
-
T. Jebara Multitask sparsity via maximum entropy discrimination J. Mach. Learn. Res. 12 2011 75 110
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 75-110
-
-
Jebara, T.1
-
25
-
-
55149088329
-
Convex multi-task feature learning
-
A. Argyriou, T. Evgeniou, and M. Pontil Convex multi-task feature learning Mach. Learn. 73 3 2008 243 272
-
(2008)
Mach. Learn.
, vol.73
, Issue.3
, pp. 243-272
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
26
-
-
80053435765
-
Learning with whom to share in multi-task feature learning
-
Z. Kang, K. Grauman, F. Sha, Learning with whom to share in multi-task feature learning, in: Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011, pp. 521-528.
-
(2011)
Proceedings of the 28th International Conference on Machine Learning (ICML-11)
, pp. 521-528
-
-
Kang, Z.1
Grauman, K.2
Sha, F.3
-
31
-
-
0346238931
-
Task clustering and gating for Bayesian multitask learning
-
B. Bakker, and T. Heskes Task clustering and gating for Bayesian multitask learning J. Mach. Learn. Res. 4 2003 83 99
-
(2003)
J. Mach. Learn. Res.
, vol.4
, pp. 83-99
-
-
Bakker, B.1
Heskes, T.2
-
33
-
-
2342632212
-
Solving a huge number of similar tasks: A combination of multi-task learning and a hierarchical Bayesian approach
-
T. Heskes Solving a huge number of similar tasks: a combination of multi-task learning and a hierarchical Bayesian approach ICML 1998 233 241
-
(1998)
ICML
, pp. 233-241
-
-
Heskes, T.1
-
34
-
-
0005274268
-
Empirical Bayes for learning to learn
-
T. Heskes Empirical Bayes for learning to learn ICML 2000 367 374
-
(2000)
ICML
, pp. 367-374
-
-
Heskes, T.1
-
35
-
-
80053459183
-
Infinite svm: A Dirichlet process mixture of large-margin kernel machines
-
J. Zhu, N. Chen, E. P. Xing, Infinite svm: a Dirichlet process mixture of large-margin kernel machines, in: Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011, pp. 617-624.
-
(2011)
Proceedings of the 28th International Conference on Machine Learning (ICML-11)
, pp. 617-624
-
-
Zhu, J.1
Chen, N.2
Xing, E.P.3
-
36
-
-
84911375886
-
Scalable multitask representation learning for scene classification
-
Columbus, OH, USA, June 23-28
-
M. Lapin, B. Schiele, M. Hein, Scalable multitask representation learning for scene classification, in: 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014, pp. 1434-1441, doi:10.1109/CVPR.2014.186.
-
(2014)
2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014
, pp. 1434-1441
-
-
Lapin, M.1
Schiele, B.2
Hein, M.3
-
37
-
-
84889572573
-
A dirty model for multiple sparse regression
-
A. Jalali, P.D. Ravikumar, and S. Sanghavi A dirty model for multiple sparse regression IEEE Trans. Inf. Theory 59 12 2013 7947 7968 10.1109/TIT.2013.2280272
-
(2013)
IEEE Trans. Inf. Theory
, vol.59
, Issue.12
, pp. 7947-7968
-
-
Jalali, A.1
Ravikumar, P.D.2
Sanghavi, S.3
-
39
-
-
80052677096
-
Integrating low-rank and group-sparse structures for robust multi-task learning
-
J. Chen, J. Zhou, J. Ye, Integrating low-rank and group-sparse structures for robust multi-task learning, in: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2011, pp. 42-50.
-
(2011)
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 42-50
-
-
Chen, J.1
Zhou, J.2
Ye, J.3
-
40
-
-
0347192053
-
Marketing models of consumer heterogeneity
-
G.M. Allenby, and P.E. Rossi Marketing models of consumer heterogeneity J. Economet. 89 1 1998 57 78
-
(1998)
J. Economet.
, vol.89
, Issue.1
, pp. 57-78
-
-
Allenby, G.M.1
Rossi, P.E.2
-
41
-
-
0032220720
-
A hierarchical Bayes model of primary and secondary demand
-
N. Arora, G.M. Allenby, and J.L. Ginter A hierarchical Bayes model of primary and secondary demand Market. Sci. 17 1 1998 29 44
-
(1998)
Market. Sci.
, vol.17
, Issue.1
, pp. 29-44
-
-
Arora, N.1
Allenby, G.M.2
Ginter, J.L.3
-
42
-
-
21244486307
-
Multicategory proximal support vector machine classifiers
-
G.M. Fung, and O.L. Mangasarian Multicategory proximal support vector machine classifiers Mach. Learn. 59 1-C2 2005 77 97
-
(2005)
Mach. Learn.
, vol.59
, Issue.1-2
, pp. 77-97
-
-
Fung, G.M.1
Mangasarian, O.L.2
-
43
-
-
0041657519
-
Interior-point methods for massive support vector machines
-
M.C. Ferris, and T.S. Munson Interior-point methods for massive support vector machines SIAM J. Optim. 13 3 2002 783 804
-
(2002)
SIAM J. Optim.
, vol.13
, Issue.3
, pp. 783-804
-
-
Ferris, M.C.1
Munson, T.S.2
|