-
1
-
-
34249753618
-
Support-vector networks
-
C. Cortes, and V. Vapnik Support-vector networks Mach. Learn. 20 1995 273 297
-
(1995)
Mach. Learn.
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
3
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
New York, NY, USA
-
B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin classifiers, in: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT'92, ACM, New York, NY, USA, 1992, pp. 144-152.
-
(1992)
Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT'92, ACM
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
4
-
-
84958743179
-
Applications of support vector machines for pattern recognition: A survey
-
H. Byun, S.-W. Lee, Applications of support vector machines for pattern recognition: a survey, in: Pattern Recognition with Support Vector Machines, 2002, pp. 213-236.
-
(2002)
Pattern Recognition with Support Vector Machines
, pp. 213-236
-
-
Byun, H.1
Lee, S.-W.2
-
6
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon, and A. Elisseeff An introduction to variable and feature selection J. Mach. Learn. Res. 3 2003 1157 1182
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
7
-
-
69249230467
-
A review of Bayesian variable selection methods: What, how, and which
-
R. O'Hara, and M. Sillanpaa A review of Bayesian variable selection methods: what, how, and which Bayesian Anal. 4 2009 85 118
-
(2009)
Bayesian Anal.
, vol.4
, pp. 85-118
-
-
O'Hara, R.1
Sillanpaa, M.2
-
8
-
-
22344452695
-
-
Denver, Colorado, USA
-
C.M. Bishop, Bayesian PCA, in: NIPS, The MIT Press, Denver, Colorado, USA, 1998, pp. 382-388.
-
(1998)
NIPS, the MIT Press
, pp. 382-388
-
-
Bishop, C.M.1
Pca, B.2
-
9
-
-
80053452697
-
On Bayesian PCA: Automatic dimensionality selection and analytic solution
-
New York, NY, USA
-
S. Nakajima, M. Sugiyama, S.D. Babacan, On Bayesian PCA: automatic dimensionality selection and analytic solution, in: ICML, Omnipress, New York, NY, USA, 2011, pp. 497-504.
-
(2011)
ICML, Omnipress
, pp. 497-504
-
-
Nakajima, S.1
Sugiyama, M.2
Babacan, S.D.3
-
10
-
-
84869422991
-
On preserving original variables in Bayesian PCA with application to image analysis
-
J. Li, and D. Tao On preserving original variables in Bayesian PCA with application to image analysis IEEE Trans. Image Process. 21 2012 4830 4843
-
(2012)
IEEE Trans. Image Process.
, vol.21
, pp. 4830-4843
-
-
Li, J.1
Tao, D.2
-
13
-
-
0141990695
-
Theoretical and empirical analysis of ReliefF and RReliefF
-
M.R. Šikonja, and I. Kononenko Theoretical and empirical analysis of ReliefF and RReliefF Mach. Learn. 53 2003 23 69
-
(2003)
Mach. Learn.
, vol.53
, pp. 23-69
-
-
Šikonja, M.R.1
Kononenko, I.2
-
15
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Gene selection for cancer classification using support vector machines Mach. Learn. 46 2002 389 422
-
(2002)
Mach. Learn.
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
17
-
-
24644515558
-
1-norm support vector machines
-
J. Zhu, S. Rosset, T. Hastie, R. Tibshirani, 1-norm support vector machines, in: Neural Information Processing Systems, vol. 16.
-
Neural Information Processing Systems
, vol.16
-
-
Zhu, J.1
Rosset, S.2
Hastie, T.3
Tibshirani, R.4
-
19
-
-
3543109140
-
A feature selection Newton method for support vector machine classification
-
G.M. Fung, and O.L. Mangasarian A feature selection Newton method for support vector machine classification Comput. Optim. Appl. 28 2004 185 202
-
(2004)
Comput. Optim. Appl.
, vol.28
, pp. 185-202
-
-
Fung, G.M.1
Mangasarian, O.L.2
-
20
-
-
34547971383
-
Direct convex relaxations of sparse SVM
-
ACM, New York, NY, USA
-
A.B. Chan, N. Vasconcelos, G.R.G. Lanckriet, Direct convex relaxations of sparse SVM, in: Proceedings of the Twenty Fourth International Conference on Machine Learning, ICML'07, ACM, New York, NY, USA, 2007, pp. 145-153.
-
(2007)
Proceedings of the Twenty Fourth International Conference on Machine Learning, ICML'07
, pp. 145-153
-
-
Chan, A.B.1
Vasconcelos, N.2
Lanckriet, G.R.G.3
-
22
-
-
79960810210
-
Manifold elastic net: A unified framework for sparse dimension reduction
-
T. Zhou, D. Tao, and X. Wu Manifold elastic net: a unified framework for sparse dimension reduction Data Min. Knowl. Discov. 22 2011 340 371
-
(2011)
Data Min. Knowl. Discov.
, vol.22
, pp. 340-371
-
-
Zhou, T.1
Tao, D.2
Wu, X.3
-
24
-
-
77950326241
-
Functions of positive and negative type and their connection with the theory of integral equations
-
J. Mercer Functions of positive and negative type and their connection with the theory of integral equations Philos. Trans. R. Soc. (A) 83 1909 69 70
-
(1909)
Philos. Trans. R. Soc. (A)
, vol.83
, pp. 69-70
-
-
Mercer, J.1
-
25
-
-
0003349188
-
Methods of Mathematical Physics
-
New York, NY, USA
-
R. Courant, D. Hilbert, Methods of Mathematical Physics, Interscience, New York, NY, USA, 1953.
-
(1953)
Interscience
-
-
Courant, R.1
Hilbert, D.2
-
26
-
-
0004094721
-
-
MIT Press, Cambridge, MA, USA
-
B. Scholkopf, A.J. Smola, Learning with Kernels, MIT Press, Cambridge, MA, USA, 2002.
-
(2002)
Learning with Kernels
-
-
Scholkopf, B.1
Smola, A.J.2
-
27
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
R. Tibshirani Regression shrinkage and selection via the lasso J. R. Stat. Soc. Ser. B 58 1996 267 288
-
(1996)
J. R. Stat. Soc. Ser. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
30
-
-
84898962683
-
Margin maximizing loss functions
-
MIT Press, Cambridge, MA, USA
-
S. Rosset, J. Zhu, T. Hastie, Margin maximizing loss functions, in: Advances in Neural Information Processing Systems (NIPS 15), MIT Press, Cambridge, MA, USA, 2003.
-
(2003)
Advances in Neural Information Processing Systems (NIPS 15)
-
-
Rosset, S.1
Zhu, J.2
Hastie, T.3
-
31
-
-
65349190055
-
On surrogate loss functions and f-divergences
-
X. Nguyen, M.J. Wainwright, and M.I. Jordan On surrogate loss functions and f-divergences Ann. Stat. 37 2009 876 904
-
(2009)
Ann. Stat.
, vol.37
, pp. 876-904
-
-
Nguyen, X.1
Wainwright, M.J.2
Jordan, M.I.3
-
33
-
-
0030303844
-
An interior trust region approach for nonlinear minimization subject to bounds
-
T.F. Coleman, and Y. Li An interior trust region approach for nonlinear minimization subject to bounds SIAM J. Optim. 6 1996 415 425
-
(1996)
SIAM J. Optim.
, vol.6
, pp. 415-425
-
-
Coleman, T.F.1
Li, Y.2
-
35
-
-
29144499905
-
Working set selection using second order information for training support vector machines
-
R.-E. Fan, P.-H. Chen, and C.-J. Lin Working set selection using second order information for training support vector machines J. Mach. Learn. Res. 6 2005 1889 1918
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1889-1918
-
-
Fan, R.-E.1
Chen, P.-H.2
Lin, C.-J.3
-
36
-
-
79951751439
-
Nesvm: A fast gradient method for support vector machines
-
IEEE Computer Society
-
T. Zhou, D. Tao, X. Wu, Nesvm: a fast gradient method for support vector machines, in: ICDM, IEEE Computer Society, 2010, pp. 679-688.
-
(2010)
ICDM
, pp. 679-688
-
-
Zhou, T.1
Tao, D.2
Wu, X.3
-
37
-
-
0033904057
-
On the convergence of the block nonlinear Gauss-Seidel method under convex constraints
-
L. Grippo, and M. Sciandrone On the convergence of the block nonlinear Gauss-Seidel method under convex constraints Oper. Res. Lett. 26 2000 127 136
-
(2000)
Oper. Res. Lett.
, vol.26
, pp. 127-136
-
-
Grippo, L.1
Sciandrone, M.2
-
40
-
-
84894320679
-
-
(Last Accessed)
-
M. Varma, 2013 (Last Accessed).
-
(2013)
-
-
Varma, M.1
-
41
-
-
77649336466
-
A new ranking method for principal components analysis and its application to face image analysis
-
C.E. Thomaz, and G.A. Giraldi A new ranking method for principal components analysis and its application to face image analysis Image Vis. Comput. 28 2010 902 913
-
(2010)
Image Vis. Comput.
, vol.28
, pp. 902-913
-
-
Thomaz, C.E.1
Giraldi, G.A.2
|