메뉴 건너뛰기




Volumn 47, Issue 6, 2014, Pages 2153-2164

Primal explicit max margin feature selection for nonlinear support vector machines

Author keywords

Alternating optimization; Embedded; Feature selection; Non convex optimization; Nonlinear; Support vector machine; Trust region method

Indexed keywords


EID: 84894355969     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2014.01.003     Document Type: Article
Times cited : (16)

References (45)
  • 1
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, and V. Vapnik Support-vector networks Mach. Learn. 20 1995 273 297
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 4
    • 84958743179 scopus 로고    scopus 로고
    • Applications of support vector machines for pattern recognition: A survey
    • H. Byun, S.-W. Lee, Applications of support vector machines for pattern recognition: a survey, in: Pattern Recognition with Support Vector Machines, 2002, pp. 213-236.
    • (2002) Pattern Recognition with Support Vector Machines , pp. 213-236
    • Byun, H.1    Lee, S.-W.2
  • 6
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon, and A. Elisseeff An introduction to variable and feature selection J. Mach. Learn. Res. 3 2003 1157 1182
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 7
    • 69249230467 scopus 로고    scopus 로고
    • A review of Bayesian variable selection methods: What, how, and which
    • R. O'Hara, and M. Sillanpaa A review of Bayesian variable selection methods: what, how, and which Bayesian Anal. 4 2009 85 118
    • (2009) Bayesian Anal. , vol.4 , pp. 85-118
    • O'Hara, R.1    Sillanpaa, M.2
  • 9
    • 80053452697 scopus 로고    scopus 로고
    • On Bayesian PCA: Automatic dimensionality selection and analytic solution
    • New York, NY, USA
    • S. Nakajima, M. Sugiyama, S.D. Babacan, On Bayesian PCA: automatic dimensionality selection and analytic solution, in: ICML, Omnipress, New York, NY, USA, 2011, pp. 497-504.
    • (2011) ICML, Omnipress , pp. 497-504
    • Nakajima, S.1    Sugiyama, M.2    Babacan, S.D.3
  • 10
    • 84869422991 scopus 로고    scopus 로고
    • On preserving original variables in Bayesian PCA with application to image analysis
    • J. Li, and D. Tao On preserving original variables in Bayesian PCA with application to image analysis IEEE Trans. Image Process. 21 2012 4830 4843
    • (2012) IEEE Trans. Image Process. , vol.21 , pp. 4830-4843
    • Li, J.1    Tao, D.2
  • 13
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RReliefF
    • M.R. Šikonja, and I. Kononenko Theoretical and empirical analysis of ReliefF and RReliefF Mach. Learn. 53 2003 23 69
    • (2003) Mach. Learn. , vol.53 , pp. 23-69
    • Šikonja, M.R.1    Kononenko, I.2
  • 15
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Gene selection for cancer classification using support vector machines Mach. Learn. 46 2002 389 422
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 19
    • 3543109140 scopus 로고    scopus 로고
    • A feature selection Newton method for support vector machine classification
    • G.M. Fung, and O.L. Mangasarian A feature selection Newton method for support vector machine classification Comput. Optim. Appl. 28 2004 185 202
    • (2004) Comput. Optim. Appl. , vol.28 , pp. 185-202
    • Fung, G.M.1    Mangasarian, O.L.2
  • 22
    • 79960810210 scopus 로고    scopus 로고
    • Manifold elastic net: A unified framework for sparse dimension reduction
    • T. Zhou, D. Tao, and X. Wu Manifold elastic net: a unified framework for sparse dimension reduction Data Min. Knowl. Discov. 22 2011 340 371
    • (2011) Data Min. Knowl. Discov. , vol.22 , pp. 340-371
    • Zhou, T.1    Tao, D.2    Wu, X.3
  • 24
    • 77950326241 scopus 로고
    • Functions of positive and negative type and their connection with the theory of integral equations
    • J. Mercer Functions of positive and negative type and their connection with the theory of integral equations Philos. Trans. R. Soc. (A) 83 1909 69 70
    • (1909) Philos. Trans. R. Soc. (A) , vol.83 , pp. 69-70
    • Mercer, J.1
  • 25
    • 0003349188 scopus 로고
    • Methods of Mathematical Physics
    • New York, NY, USA
    • R. Courant, D. Hilbert, Methods of Mathematical Physics, Interscience, New York, NY, USA, 1953.
    • (1953) Interscience
    • Courant, R.1    Hilbert, D.2
  • 27
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani Regression shrinkage and selection via the lasso J. R. Stat. Soc. Ser. B 58 1996 267 288
    • (1996) J. R. Stat. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 28
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee Choosing multiple parameters for support vector machines Mach. Learn. 46 2002 131 159
    • (2002) Mach. Learn. , vol.46 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 31
    • 65349190055 scopus 로고    scopus 로고
    • On surrogate loss functions and f-divergences
    • X. Nguyen, M.J. Wainwright, and M.I. Jordan On surrogate loss functions and f-divergences Ann. Stat. 37 2009 876 904
    • (2009) Ann. Stat. , vol.37 , pp. 876-904
    • Nguyen, X.1    Wainwright, M.J.2    Jordan, M.I.3
  • 33
    • 0030303844 scopus 로고    scopus 로고
    • An interior trust region approach for nonlinear minimization subject to bounds
    • T.F. Coleman, and Y. Li An interior trust region approach for nonlinear minimization subject to bounds SIAM J. Optim. 6 1996 415 425
    • (1996) SIAM J. Optim. , vol.6 , pp. 415-425
    • Coleman, T.F.1    Li, Y.2
  • 35
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • R.-E. Fan, P.-H. Chen, and C.-J. Lin Working set selection using second order information for training support vector machines J. Mach. Learn. Res. 6 2005 1889 1918
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3
  • 36
    • 79951751439 scopus 로고    scopus 로고
    • Nesvm: A fast gradient method for support vector machines
    • IEEE Computer Society
    • T. Zhou, D. Tao, X. Wu, Nesvm: a fast gradient method for support vector machines, in: ICDM, IEEE Computer Society, 2010, pp. 679-688.
    • (2010) ICDM , pp. 679-688
    • Zhou, T.1    Tao, D.2    Wu, X.3
  • 37
    • 0033904057 scopus 로고    scopus 로고
    • On the convergence of the block nonlinear Gauss-Seidel method under convex constraints
    • L. Grippo, and M. Sciandrone On the convergence of the block nonlinear Gauss-Seidel method under convex constraints Oper. Res. Lett. 26 2000 127 136
    • (2000) Oper. Res. Lett. , vol.26 , pp. 127-136
    • Grippo, L.1    Sciandrone, M.2
  • 40
    • 84894320679 scopus 로고    scopus 로고
    • (Last Accessed)
    • M. Varma, 2013 (Last Accessed).
    • (2013)
    • Varma, M.1
  • 41
    • 77649336466 scopus 로고    scopus 로고
    • A new ranking method for principal components analysis and its application to face image analysis
    • C.E. Thomaz, and G.A. Giraldi A new ranking method for principal components analysis and its application to face image analysis Image Vis. Comput. 28 2010 902 913
    • (2010) Image Vis. Comput. , vol.28 , pp. 902-913
    • Thomaz, C.E.1    Giraldi, G.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.