-
2
-
-
70349650212
-
Physical binding pocket induction for affinity prediction
-
Langham, J. J.; Cleves, A. E.; Spitzer, R.; Kirshner, D.; Jain, A. N. Physical binding pocket induction for affinity prediction J. Med. Chem. 2009, 52, 6107-6125
-
(2009)
J. Med. Chem.
, vol.52
, pp. 6107-6125
-
-
Langham, J.J.1
Cleves, A.E.2
Spitzer, R.3
Kirshner, D.4
Jain, A.N.5
-
3
-
-
77956831642
-
QMOD: Physically meaningful QSAR
-
Jain, A. N. QMOD: Physically meaningful QSAR J. Comput. Aided Mol. Des. 2010, 24, 865-878
-
(2010)
J. Comput. Aided Mol. Des.
, vol.24
, pp. 865-878
-
-
Jain, A.N.1
-
4
-
-
84857448105
-
Does your model weigh the same as a Duck?
-
Jain, A.; Cleves, A. Does your model weigh the same as a Duck? J. Comput. Aided Mol. Des. 2012, 26, 57-67
-
(2012)
J. Comput. Aided Mol. Des.
, vol.26
, pp. 57-67
-
-
Jain, A.1
Cleves, A.2
-
5
-
-
51849112827
-
Novel dual-targeting benzimidazole urea inhibitors of DNA gyrase and topoisomerase IV possessing potent antibacterial activity: Intelligent design and evolution through the judicious use of structure-guided design and stucture- activity relationships
-
Charifson, P.; Grillot, A.; Grossman, T.; Parsons, J.; Badia, M.; Bellon, S.; Deininger, D.; Drumm, J.; Gross, C.; LeTiran, A. Novel dual-targeting benzimidazole urea inhibitors of DNA gyrase and topoisomerase IV possessing potent antibacterial activity: intelligent design and evolution through the judicious use of structure-guided design and stucture- activity relationships J. Med. Chem. 2008, 51, 5243-5263
-
(2008)
J. Med. Chem.
, vol.51
, pp. 5243-5263
-
-
Charifson, P.1
Grillot, A.2
Grossman, T.3
Parsons, J.4
Badia, M.5
Bellon, S.6
Deininger, D.7
Drumm, J.8
Gross, C.9
Letiran, A.10
-
6
-
-
0030649484
-
Solving the multiple instance problem with axis-parallel rectangles
-
Dietterich, T.; Lathrop, R.; Lozano-Pérez, T. Solving the multiple instance problem with axis-parallel rectangles Artif. Intell. 1997, 89, 31-71
-
(1997)
Artif. Intell.
, vol.89
, pp. 31-71
-
-
Dietterich, T.1
Lathrop, R.2
Lozano-Pérez, T.3
-
7
-
-
0028706933
-
A Shape-Based Machine Learning Tool for Drug Design
-
Jain, A. N.; Dietterich, T. G.; Lathrop, R. H.; Chapman, D.; Critchlow, J., R. E.; Bauer, B. E.; Webster, T. A.; Lozano-Perez, T. A Shape-Based Machine Learning Tool for Drug Design J. Comput. Aided Mol. Des. 1994, 8, 635-652
-
(1994)
J. Comput. Aided Mol. Des.
, vol.8
, pp. 635-652
-
-
Jain, A.N.1
Dietterich, T.G.2
Lathrop, R.H.3
Chapman, D.4
Critchlow, J.R.E.5
Bauer, B.E.6
Webster, T.A.7
Lozano-Perez, T.8
-
8
-
-
0027930292
-
Compass: Predicting biological activities from molecular surface properties. Performance comparisons on a steroid benchmark
-
Jain, A. N.; Koile, K.; Chapman, D. Compass: Predicting biological activities from molecular surface properties. Performance comparisons on a steroid benchmark J. Med. Chem. 1994, 37, 2315-2327
-
(1994)
J. Med. Chem.
, vol.37
, pp. 2315-2327
-
-
Jain, A.N.1
Koile, K.2
Chapman, D.3
-
9
-
-
0028940949
-
Quantitative binding site model generation: Compass applied to multiple chemotypes targeting the 5-HT1a receptor
-
Jain, A. N.; Harris, N. L.; Park, J. Y. Quantitative binding site model generation: Compass applied to multiple chemotypes targeting the 5-HT1a receptor J. Med. Chem. 1995, 38, 1295-1308
-
(1995)
J. Med. Chem.
, vol.38
, pp. 1295-1308
-
-
Jain, A.N.1
Harris, N.L.2
Park, J.Y.3
-
10
-
-
0030255303
-
Scoring noncovalent protein-ligand interactions: A continuous differentiable function tuned to compute binding affinities
-
Jain, A. N. Scoring noncovalent protein-ligand interactions: A continuous differentiable function tuned to compute binding affinities J. Comput. Aided Mol. Des. 1996, 10, 427-440
-
(1996)
J. Comput. Aided Mol. Des.
, vol.10
, pp. 427-440
-
-
Jain, A.N.1
-
11
-
-
33646740651
-
Parameter estimation for scoring protein-ligand interactions using negative training data
-
Pham, T. A.; Jain, A. N. Parameter estimation for scoring protein-ligand interactions using negative training data J. Med. Chem. 2006, 49, 5856-5868
-
(2006)
J. Med. Chem.
, vol.49
, pp. 5856-5868
-
-
Pham, T.A.1
Jain, A.N.2
-
12
-
-
47249097083
-
Customizing scoring functions for docking
-
Pham, T. A.; Jain, A. N. Customizing scoring functions for docking J. Comput. Aided Mol. Des. 2008, 22, 269-286
-
(2008)
J. Comput. Aided Mol. Des.
, vol.22
, pp. 269-286
-
-
Pham, T.A.1
Jain, A.N.2
-
13
-
-
0035478854
-
Random forests
-
Breiman, L. Random forests Mach. Learn. 2001, 45, 5-32
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
14
-
-
0345548657
-
Random forest: A classification and regression tool for compound classification and QSAR modeling
-
Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.; Sheridan, R.; Feuston, B. Random forest: A classification and regression tool for compound classification and QSAR modeling J. Chem. Inf. Comput. Sci. 2003, 43, 1947-1958
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, pp. 1947-1958
-
-
Svetnik, V.1
Liaw, A.2
Tong, C.3
Culberson, J.4
Sheridan, R.5
Feuston, B.6
-
15
-
-
84859192809
-
Comparison of random forest and Pipeline Pilot Naive Bayes in prospective QSAR predictions
-
Chen, B.; Sheridan, R.; Hornak, V.; Voigt, J. Comparison of random forest and Pipeline Pilot Naive Bayes in prospective QSAR predictions J. Chem. Inf. Model 2012, 52, 792-803
-
(2012)
J. Chem. Inf. Model
, vol.52
, pp. 792-803
-
-
Chen, B.1
Sheridan, R.2
Hornak, V.3
Voigt, J.4
-
16
-
-
84857045254
-
Scientific discovery as a combinatorial optimization problem: How best to navigate the landscape of possible experiments?
-
Kell, D. Scientific discovery as a combinatorial optimization problem: How best to navigate the landscape of possible experiments? BioEssays 2012, 34, 236-244
-
(2012)
BioEssays
, vol.34
, pp. 236-244
-
-
Kell, D.1
-
17
-
-
0037365194
-
Active learning with support vector machines in the drug discovery process
-
Warmuth, M.; Liao, J.; Rätsch, G.; Mathieson, M.; Putta, S.; Lemmen, C. Active learning with support vector machines in the drug discovery process J. Chem. Inf. Comput. Sci. 2003, 43, 667-673
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, pp. 667-673
-
-
Warmuth, M.1
Liao, J.2
Rätsch, G.3
Mathieson, M.4
Putta, S.5
Lemmen, C.6
-
18
-
-
44449101219
-
Virtual screening system for finding structurally diverse hits by active learning
-
Fujiwara, Y.; Yamashita, Y.; Osoda, T.; Asogawa, M.; Fukushima, C.; Asao, M.; Shimadzu, H.; Nakao, K.; Shimizu, R. Virtual screening system for finding structurally diverse hits by active learning J. Chem. Inf. Model. 2008, 48, 930-940
-
(2008)
J. Chem. Inf. Model.
, vol.48
, pp. 930-940
-
-
Fujiwara, Y.1
Yamashita, Y.2
Osoda, T.3
Asogawa, M.4
Fukushima, C.5
Asao, M.6
Shimadzu, H.7
Nakao, K.8
Shimizu, R.9
-
19
-
-
80051567982
-
Surface-based protein binding pocket similarity
-
Spitzer, R.; Cleves, A. E.; Jain, A. N. Surface-based protein binding pocket similarity Proteins 2011, 79, 2746-63
-
(2011)
Proteins
, vol.79
, pp. 2746-2763
-
-
Spitzer, R.1
Cleves, A.E.2
Jain, A.N.3
-
20
-
-
66249097011
-
Large-scale application of high-throughput molecular mechanics with Poisson-Boltzmann surface area for routine physics-based scoring of protein-ligand complexes
-
Brown, S.; Muchmore, S. Large-scale application of high-throughput molecular mechanics with Poisson-Boltzmann surface area for routine physics-based scoring of protein-ligand complexes J. Med. Chem. 2009, 52, 3159-3165
-
(2009)
J. Med. Chem.
, vol.52
, pp. 3159-3165
-
-
Brown, S.1
Muchmore, S.2
-
21
-
-
0036827075
-
Reoptimization of MDL keys for use in drug discovery
-
Durant, J.; Leland, B.; Henry, D.; Nourse, J. Reoptimization of MDL keys for use in drug discovery J. Chem. Inf. Comput. Sci. 2002, 42, 1273-1280
-
(2002)
J. Chem. Inf. Comput. Sci.
, vol.42
, pp. 1273-1280
-
-
Durant, J.1
Leland, B.2
Henry, D.3
Nourse, J.4
|