-
2
-
-
17044411400
-
The role of CXCL12 in the organ-specific process of artery formation
-
Ara T., Tokoyoda K., Okamoto R., Koni P.A., Nagasawa T. The role of CXCL12 in the organ-specific process of artery formation. Blood 2005, 105:3155-3161.
-
(2005)
Blood
, vol.105
, pp. 3155-3161
-
-
Ara, T.1
Tokoyoda, K.2
Okamoto, R.3
Koni, P.A.4
Nagasawa, T.5
-
3
-
-
79959475561
-
Cxcl12 evolution-subfunctionalization of a ligand through altered interaction with the chemokine receptor
-
Boldajipour B., Doitsidou M., Tarbashevich K., Laguri C., Yu S.R., Ries J., Dumstrei K., Thelen S., Dörries J., Messerschmidt E.M., et al. Cxcl12 evolution-subfunctionalization of a ligand through altered interaction with the chemokine receptor. Development 2011, 138:2909-2914.
-
(2011)
Development
, vol.138
, pp. 2909-2914
-
-
Boldajipour, B.1
Doitsidou, M.2
Tarbashevich, K.3
Laguri, C.4
Yu, S.R.5
Ries, J.6
Dumstrei, K.7
Thelen, S.8
Dörries, J.9
Messerschmidt, E.M.10
-
4
-
-
77955759587
-
Arteries provide essential guidance cues for lymphatic endothelial cells in the zebrafish trunk
-
Bussmann J., Bos F.L., Urasaki A., Kawakami K., Duckers H.J., Schulte-Merker S. Arteries provide essential guidance cues for lymphatic endothelial cells in the zebrafish trunk. Development 2010, 137:2653-2657.
-
(2010)
Development
, vol.137
, pp. 2653-2657
-
-
Bussmann, J.1
Bos, F.L.2
Urasaki, A.3
Kawakami, K.4
Duckers, H.J.5
Schulte-Merker, S.6
-
5
-
-
79955445293
-
Arterial-venous network formation during brain vascularization involves hemodynamic regulation of chemokine signaling
-
Bussmann J., Wolfe S.A., Siekmann A.F. Arterial-venous network formation during brain vascularization involves hemodynamic regulation of chemokine signaling. Development 2011, 138:1717-1726.
-
(2011)
Development
, vol.138
, pp. 1717-1726
-
-
Bussmann, J.1
Wolfe, S.A.2
Siekmann, A.F.3
-
6
-
-
84859809053
-
Chemokine signaling directs trunk lymphatic network formation along the preexisting blood vasculature
-
Cha Y.R., Fujita M., Butler M., Isogai S., Kochhan E., Siekmann A.F., Weinstein B.M. Chemokine signaling directs trunk lymphatic network formation along the preexisting blood vasculature. Dev. Cell 2012, 22:824-836.
-
(2012)
Dev. Cell
, vol.22
, pp. 824-836
-
-
Cha, Y.R.1
Fujita, M.2
Butler, M.3
Isogai, S.4
Kochhan, E.5
Siekmann, A.F.6
Weinstein, B.M.7
-
7
-
-
84911489742
-
The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis
-
Chen H.I., Sharma B., Akerberg B.N., Numi H.J., Kivelä R., Saharinen P., Aghajanian H., McKay A.S., Bogard P.E., Chang A.H., et al. The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis. Development 2014, 141:4500-4512.
-
(2014)
Development
, vol.141
, pp. 4500-4512
-
-
Chen, H.I.1
Sharma, B.2
Akerberg, B.N.3
Numi, H.J.4
Kivelä, R.5
Saharinen, P.6
Aghajanian, H.7
McKay, A.S.8
Bogard, P.E.9
Chang, A.H.10
-
8
-
-
0038639367
-
Rapid analysis of angiogenesis drugs in a live fluorescent zebrafish assay
-
Cross L.M., Cook M.A., Lin S., Chen J.N., Rubinstein A.L. Rapid analysis of angiogenesis drugs in a live fluorescent zebrafish assay. Arterioscler. Thromb. Vasc. Biol. 2003, 23:911-912.
-
(2003)
Arterioscler. Thromb. Vasc. Biol.
, vol.23
, pp. 911-912
-
-
Cross, L.M.1
Cook, M.A.2
Lin, S.3
Chen, J.N.4
Rubinstein, A.L.5
-
9
-
-
84863649372
-
Bmps and id2a act upstream of Twist1 to restrict ectomesenchyme potential of the cranial neural crest
-
Das A., Crump J.G. Bmps and id2a act upstream of Twist1 to restrict ectomesenchyme potential of the cranial neural crest. PLoS Genet. 2012, 8:e1002710.
-
(2012)
PLoS Genet.
, vol.8
, pp. e1002710
-
-
Das, A.1
Crump, J.G.2
-
10
-
-
0037058994
-
Molecular basis of cell migration in the fish lateral line: role of the chemokine receptor CXCR4 and of its ligand, SDF1
-
David N.B., Sapède D., Saint-Etienne L., Thisse C., Thisse B., Dambly-Chaudière C., Rosa F.M., Ghysen A. Molecular basis of cell migration in the fish lateral line: role of the chemokine receptor CXCR4 and of its ligand, SDF1. Proc. Natl. Acad. Sci. USA 2002, 99:16297-16302.
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, pp. 16297-16302
-
-
David, N.B.1
Sapède, D.2
Saint-Etienne, L.3
Thisse, C.4
Thisse, B.5
Dambly-Chaudière, C.6
Rosa, F.M.7
Ghysen, A.8
-
11
-
-
0027410626
-
Development of the coronary arteries and cardiac veins in the dogfish (Scyliorhinus canicula)
-
De Andrés A.V., Muñoz-Chápuli R., Sans-Coma V. Development of the coronary arteries and cardiac veins in the dogfish (Scyliorhinus canicula). Anat. Rec. 1993, 235:436-442.
-
(1993)
Anat. Rec.
, vol.235
, pp. 436-442
-
-
De Andrés, A.V.1
Muñoz-Chápuli, R.2
Sans-Coma, V.3
-
12
-
-
0037184521
-
Guidance of primordial germ cell migration by the chemokine SDF-1
-
Doitsidou M., Reichman-Fried M., Stebler J., Köprunner M., Dörries J., Meyer D., Esguerra C.V., Leung T., Raz E. Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 2002, 111:647-659.
-
(2002)
Cell
, vol.111
, pp. 647-659
-
-
Doitsidou, M.1
Reichman-Fried, M.2
Stebler, J.3
Köprunner, M.4
Dörries, J.5
Meyer, D.6
Esguerra, C.V.7
Leung, T.8
Raz, E.9
-
13
-
-
77957714521
-
Computer control of microscopes using μManager
-
14.20.1-14.20.17
-
Edelstein A., Amodaj N., Hoover K., Vale R., Stuurman N. Computer control of microscopes using μManager. Curr. Protoc. Mol. Biol. 2010, 92. 14.20.1-14.20.17.
-
(2010)
Curr. Protoc. Mol. Biol.
, vol.92
-
-
Edelstein, A.1
Amodaj, N.2
Hoover, K.3
Vale, R.4
Stuurman, N.5
-
14
-
-
79960682010
-
Stromal cell-derived factor-1 and hematopoietic cell homing in an adult zebrafish model of hematopoietic cell transplantation
-
Glass T.J., Lund T.C., Patrinostro X., Tolar J., Bowman T.V., Zon L.I., Blazar B.R. Stromal cell-derived factor-1 and hematopoietic cell homing in an adult zebrafish model of hematopoietic cell transplantation. Blood 2011, 118:766-774.
-
(2011)
Blood
, vol.118
, pp. 766-774
-
-
Glass, T.J.1
Lund, T.C.2
Patrinostro, X.3
Tolar, J.4
Bowman, T.V.5
Zon, L.I.6
Blazar, B.R.7
-
15
-
-
84860237424
-
Clonally dominant cardiomyocytes direct heart morphogenesis
-
Gupta V., Poss K.D. Clonally dominant cardiomyocytes direct heart morphogenesis. Nature 2012, 484:479-484.
-
(2012)
Nature
, vol.484
, pp. 479-484
-
-
Gupta, V.1
Poss, K.D.2
-
16
-
-
0034307696
-
Structure and function of the developing zebrafish heart
-
Hu N., Sedmera D., Yost H.J., Clark E.B. Structure and function of the developing zebrafish heart. Anat. Rec. 2000, 260:148-157.
-
(2000)
Anat. Rec.
, vol.260
, pp. 148-157
-
-
Hu, N.1
Sedmera, D.2
Yost, H.J.3
Clark, E.B.4
-
17
-
-
0023942447
-
Development of the coronary arteries in the embryonic human heart
-
Hutchins G.M., Kessler-Hanna A., Moore G.W. Development of the coronary arteries in the embryonic human heart. Circulation 1988, 77:1250-1257.
-
(1988)
Circulation
, vol.77
, pp. 1250-1257
-
-
Hutchins, G.M.1
Kessler-Hanna, A.2
Moore, G.W.3
-
18
-
-
84867879862
-
Migration of cardiomyocytes is essential for heart regeneration in zebrafish
-
Itou J., Oishi I., Kawakami H., Glass T.J., Richter J., Johnson A., Lund T.C., Kawakami Y. Migration of cardiomyocytes is essential for heart regeneration in zebrafish. Development 2012, 139:4133-4142.
-
(2012)
Development
, vol.139
, pp. 4133-4142
-
-
Itou, J.1
Oishi, I.2
Kawakami, H.3
Glass, T.J.4
Richter, J.5
Johnson, A.6
Lund, T.C.7
Kawakami, Y.8
-
19
-
-
70749096913
-
Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants
-
Kathiresan S., Voight B.F., Purcell S., Musunuru K., Ardissino D., Mannucci P.M., Anand S., Engert J.C., Samani N.J., Schunkert H., et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat. Genet. 2009, 41:334-341. Myocardial Infarction Genetics Consortium, Wellcome Trust Case Control ConsortiumWellcome Trust Case Control Consortium.
-
(2009)
Nat. Genet.
, vol.41
, pp. 334-341
-
-
Kathiresan, S.1
Voight, B.F.2
Purcell, S.3
Musunuru, K.4
Ardissino, D.5
Mannucci, P.M.6
Anand, S.7
Engert, J.C.8
Samani, N.J.9
Schunkert, H.10
-
20
-
-
84863229669
-
Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells
-
Katz T.C., Singh M.K., Degenhardt K., Rivera-Feliciano J., Johnson R.L., Epstein J.A., Tabin C.J. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev. Cell 2012, 22:639-650.
-
(2012)
Dev. Cell
, vol.22
, pp. 639-650
-
-
Katz, T.C.1
Singh, M.K.2
Degenhardt, K.3
Rivera-Feliciano, J.4
Johnson, R.L.5
Epstein, J.A.6
Tabin, C.J.7
-
21
-
-
80051790554
-
The role of chemokines and their receptors in angiogenesis
-
Kiefer F., Siekmann A.F. The role of chemokines and their receptors in angiogenesis. Cell. Mol. Life Sci. 2011, 68:2811-2830.
-
(2011)
Cell. Mol. Life Sci.
, vol.68
, pp. 2811-2830
-
-
Kiefer, F.1
Siekmann, A.F.2
-
22
-
-
77950201708
-
Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes
-
Kikuchi K., Holdway J.E., Werdich A.A., Anderson R.M., Fang Y., Egnaczyk G.F., Evans T., Macrae C.A., Stainier D.Y., Poss K.D. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 2010, 464:601-605.
-
(2010)
Nature
, vol.464
, pp. 601-605
-
-
Kikuchi, K.1
Holdway, J.E.2
Werdich, A.A.3
Anderson, R.M.4
Fang, Y.5
Egnaczyk, G.F.6
Evans, T.7
Macrae, C.A.8
Stainier, D.Y.9
Poss, K.D.10
-
23
-
-
79959427955
-
Tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration
-
Kikuchi K., Gupta V., Wang J., Holdway J.E., Wills A.A., Fang Y., Poss K.D. tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 2011, 138:2895-2902.
-
(2011)
Development
, vol.138
, pp. 2895-2902
-
-
Kikuchi, K.1
Gupta, V.2
Wang, J.3
Holdway, J.E.4
Wills, A.A.5
Fang, Y.6
Poss, K.D.7
-
24
-
-
0037448598
-
A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor
-
Tübingen 2000 Screen Consortium
-
Knaut H., Werz C., Geisler R., Nüsslein-Volhard C., Tubingen Screen C. A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor. Nature 2003, 421:279-282. Tübingen 2000 Screen Consortium.
-
(2003)
Nature
, vol.421
, pp. 279-282
-
-
Knaut, H.1
Werz, C.2
Geisler, R.3
Nüsslein-Volhard, C.4
Tubingen Screen, C.5
-
25
-
-
0036039827
-
Invivo imaging of embryonic vascular development using transgenic zebrafish
-
Lawson N.D., Weinstein B.M. Invivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 2002, 248:307-318.
-
(2002)
Dev. Biol.
, vol.248
, pp. 307-318
-
-
Lawson, N.D.1
Weinstein, B.M.2
-
26
-
-
0346403347
-
Heart of glass regulates the concentric growth of the heart in zebrafish
-
Mably J.D., Mohideen M.A., Burns C.G., Chen J.N., Fishman M.C. heart of glass regulates the concentric growth of the heart in zebrafish. Curr. Biol. 2003, 13:2138-2147.
-
(2003)
Curr. Biol.
, vol.13
, pp. 2138-2147
-
-
Mably, J.D.1
Mohideen, M.A.2
Burns, C.G.3
Chen, J.N.4
Fishman, M.C.5
-
27
-
-
78650724551
-
Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish
-
Mosimann C., Kaufman C.K., Li P., Pugach E.K., Tamplin O.J., Zon L.I. Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish. Development 2011, 138:169-177.
-
(2011)
Development
, vol.138
, pp. 169-177
-
-
Mosimann, C.1
Kaufman, C.K.2
Li, P.3
Pugach, E.K.4
Tamplin, O.J.5
Zon, L.I.6
-
28
-
-
0029761393
-
Development of the subepicardial mesenchyme and the early cardiac vessels in the dogfish (Scyliorhinus canicula)
-
Muñoz-Chápuli R., Macias D., Ramos C., Gallego A., De Andrés V. Development of the subepicardial mesenchyme and the early cardiac vessels in the dogfish (Scyliorhinus canicula). J.Exp. Zool. 1996, 275:95-111.
-
(1996)
J.Exp. Zool.
, vol.275
, pp. 95-111
-
-
Muñoz-Chápuli, R.1
Macias, D.2
Ramos, C.3
Gallego, A.4
De Andrés, V.5
-
29
-
-
53349098894
-
Chemokine signaling controls endodermal migration during zebrafish gastrulation
-
Nair S., Schilling T.F. Chemokine signaling controls endodermal migration during zebrafish gastrulation. Science 2008, 322:89-92.
-
(2008)
Science
, vol.322
, pp. 89-92
-
-
Nair, S.1
Schilling, T.F.2
-
30
-
-
84878846928
-
Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish
-
Pan Y.A., Freundlich T., Weissman T.A., Schoppik D., Wang X.C., Zimmerman S., Ciruna B., Sanes J.R., Lichtman J.W., Schier A.F. Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development 2013, 140:2835-2846.
-
(2013)
Development
, vol.140
, pp. 2835-2846
-
-
Pan, Y.A.1
Freundlich, T.2
Weissman, T.A.3
Schoppik, D.4
Wang, X.C.5
Zimmerman, S.6
Ciruna, B.7
Sanes, J.R.8
Lichtman, J.W.9
Schier, A.F.10
-
31
-
-
12244298152
-
Origin of coronary endothelial cells from epicardial mesothelium in avian embryos
-
Pérez-Pomares J.M., Carmona R., González-Iriarte M., Atencia G., Wessels A., Muñoz-Chápuli R. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int. J. Dev. Biol. 2002, 46:1005-1013.
-
(2002)
Int. J. Dev. Biol.
, vol.46
, pp. 1005-1013
-
-
Pérez-Pomares, J.M.1
Carmona, R.2
González-Iriarte, M.3
Atencia, G.4
Wessels, A.5
Muñoz-Chápuli, R.6
-
32
-
-
34548127051
-
The Wilms tumor genes wt1a and wt1b control different steps during formation of the zebrafish pronephros
-
Perner B., Englert C., Bollig F. The Wilms tumor genes wt1a and wt1b control different steps during formation of the zebrafish pronephros. Dev. Biol. 2007, 309:87-96.
-
(2007)
Dev. Biol.
, vol.309
, pp. 87-96
-
-
Perner, B.1
Englert, C.2
Bollig, F.3
-
33
-
-
0027227849
-
Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras
-
Poelmann R.E., Gittenberger-de Groot A.C., Mentink M.M., Bökenkamp R., Hogers B. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ. Res. 1993, 73:559-568.
-
(1993)
Circ. Res.
, vol.73
, pp. 559-568
-
-
Poelmann, R.E.1
Gittenberger-de Groot, A.C.2
Mentink, M.M.3
Bökenkamp, R.4
Hogers, B.5
-
35
-
-
78149411850
-
Cranial vasculature in zebrafish forms by angioblast cluster-derived angiogenesis
-
Proulx K., Lu A., Sumanas S. Cranial vasculature in zebrafish forms by angioblast cluster-derived angiogenesis. Dev. Biol. 2010, 348:34-46.
-
(2010)
Dev. Biol.
, vol.348
, pp. 34-46
-
-
Proulx, K.1
Lu, A.2
Sumanas, S.3
-
37
-
-
67650730269
-
Chemokine signaling in embryonic cell migration: a fisheye view
-
Raz E., Mahabaleshwar H. Chemokine signaling in embryonic cell migration: a fisheye view. Development 2009, 136:1223-1229.
-
(2009)
Development
, vol.136
, pp. 1223-1229
-
-
Raz, E.1
Mahabaleshwar, H.2
-
38
-
-
77950237662
-
Coronary arteries form by developmental reprogramming of venous cells
-
Red-Horse K., Ueno H., Weissman I.L., Krasnow M.A. Coronary arteries form by developmental reprogramming of venous cells. Nature 2010, 464:549-553.
-
(2010)
Nature
, vol.464
, pp. 549-553
-
-
Red-Horse, K.1
Ueno, H.2
Weissman, I.L.3
Krasnow, M.A.4
-
39
-
-
0030952289
-
Mechanisms of angiogenesis
-
Risau W. Mechanisms of angiogenesis. Nature 1997, 386:671-674.
-
(1997)
Nature
, vol.386
, pp. 671-674
-
-
Risau, W.1
-
40
-
-
34547623750
-
Genomewide association analysis of coronary artery disease
-
Samani N.J., Erdmann J., Hall A.S., Hengstenberg C., Mangino M., Mayer B., Dixon R.J., Meitinger T., Braund P., Wichmann H.E., et al. Genomewide association analysis of coronary artery disease. N.Engl. J. Med. 2007, 357:443-453. WTCCC and the Cardiogenics Consortium.
-
(2007)
N.Engl. J. Med.
, vol.357
, pp. 443-453
-
-
Samani, N.J.1
Erdmann, J.2
Hall, A.S.3
Hengstenberg, C.4
Mangino, M.5
Mayer, B.6
Dixon, R.J.7
Meitinger, T.8
Braund, P.9
Wichmann, H.E.10
-
41
-
-
79953204259
-
Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease
-
Cardiogenics
-
Schunkert H., König I.R., Kathiresan S., Reilly M.P., Assimes T.L., Holm H., Preuss M., Stewart A.F., Barbalic M., Gieger C., et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 2011, 43:333-338. Cardiogenics, CARDIoGRAM Consortium CARDIoGRAM Consortium.
-
(2011)
Nat. Genet.
, vol.43
, pp. 333-338
-
-
Schunkert, H.1
König, I.R.2
Kathiresan, S.3
Reilly, M.P.4
Assimes, T.L.5
Holm, H.6
Preuss, M.7
Stewart, A.F.8
Barbalic, M.9
Gieger, C.10
-
43
-
-
39249083750
-
Development of the proepicardial organ in the zebrafish
-
Serluca F.C. Development of the proepicardial organ in the zebrafish. Dev. Biol. 2008, 315:18-27.
-
(2008)
Dev. Biol.
, vol.315
, pp. 18-27
-
-
Serluca, F.C.1
-
44
-
-
70349617470
-
Chemokine signaling guides regional patterning of the first embryonic artery
-
Siekmann A.F., Standley C., Fogarty K.E., Wolfe S.A., Lawson N.D. Chemokine signaling guides regional patterning of the first embryonic artery. Genes Dev. 2009, 23:2272-2277.
-
(2009)
Genes Dev.
, vol.23
, pp. 2272-2277
-
-
Siekmann, A.F.1
Standley, C.2
Fogarty, K.E.3
Wolfe, S.A.4
Lawson, N.D.5
-
45
-
-
0027296431
-
Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation
-
Stainier D.Y., Lee R.K., Fishman M.C. Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development 1993, 119:31-40.
-
(1993)
Development
, vol.119
, pp. 31-40
-
-
Stainier, D.Y.1
Lee, R.K.2
Fishman, M.C.3
-
46
-
-
0032508033
-
The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract
-
Tachibana K., Hirota S., Iizasa H., Yoshida H., Kawabata K., Kataoka Y., Kitamura Y., Matsushima K., Yoshida N., Nishikawa S., et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 1998, 393:591-594.
-
(1998)
Nature
, vol.393
, pp. 591-594
-
-
Tachibana, K.1
Hirota, S.2
Iizasa, H.3
Yoshida, H.4
Kawabata, K.5
Kataoka, Y.6
Kitamura, Y.7
Matsushima, K.8
Yoshida, N.9
Nishikawa, S.10
-
47
-
-
68049123542
-
The CXCL12 (SDF-1)/CXCR4 axis is essential for the development of renal vasculature
-
Takabatake Y., Sugiyama T., Kohara H., Matsusaka T., Kurihara H., Koni P.A., Nagasawa Y., Hamano T., Matsui I., Kawada N., et al. The CXCL12 (SDF-1)/CXCR4 axis is essential for the development of renal vasculature. J.Am. Soc. Nephrol. 2009, 20:1714-1723.
-
(2009)
J.Am. Soc. Nephrol.
, vol.20
, pp. 1714-1723
-
-
Takabatake, Y.1
Sugiyama, T.2
Kohara, H.3
Matsusaka, T.4
Kurihara, H.5
Koni, P.A.6
Nagasawa, Y.7
Hamano, T.8
Matsui, I.9
Kawada, N.10
-
48
-
-
0026744317
-
Sudden cardiac death associated with isolated congenital coronary artery anomalies
-
Taylor A.J., Rogan K.M., Virmani R. Sudden cardiac death associated with isolated congenital coronary artery anomalies. J.Am. Coll. Cardiol. 1992, 20:640-647.
-
(1992)
J.Am. Coll. Cardiol.
, vol.20
, pp. 640-647
-
-
Taylor, A.J.1
Rogan, K.M.2
Virmani, R.3
-
49
-
-
84883318758
-
Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries
-
Tian X., Hu T., Zhang H., He L., Huang X., Liu Q., Yu W., He L., Yang Z., Zhang Z., et al. Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell Res. 2013, 23:1075-1090.
-
(2013)
Cell Res.
, vol.23
, pp. 1075-1090
-
-
Tian, X.1
Hu, T.2
Zhang, H.3
He, L.4
Huang, X.5
Liu, Q.6
Yu, W.7
He, L.8
Yang, Z.9
Zhang, Z.10
-
50
-
-
84903703870
-
Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart
-
Tian X., Hu T., Zhang H., He L., Huang X., Liu Q., Yu W., He L., Yang Z., Yan Y., et al. Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart. Science 2014, 345:90-94.
-
(2014)
Science
, vol.345
, pp. 90-94
-
-
Tian, X.1
Hu, T.2
Zhang, H.3
He, L.4
Huang, X.5
Liu, Q.6
Yu, W.7
He, L.8
Yang, Z.9
Yan, Y.10
-
52
-
-
34250207330
-
The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b
-
Valentin G., Haas P., Gilmour D. The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b. Curr. Biol. 2007, 17:1026-1031.
-
(2007)
Curr. Biol.
, vol.17
, pp. 1026-1031
-
-
Valentin, G.1
Haas, P.2
Gilmour, D.3
-
53
-
-
84896880036
-
Divergence of zebrafish and mouse lymphatic cell fate specification pathways
-
van Impel A., Zhao Z., Hermkens D.M., Roukens M.G., Fischer J.C., Peterson-Maduro J., Duckers H., Ober E.A., Ingham P.W., Schulte-Merker S. Divergence of zebrafish and mouse lymphatic cell fate specification pathways. Development 2014, 141:1228-1238.
-
(2014)
Development
, vol.141
, pp. 1228-1238
-
-
van Impel, A.1
Zhao, Z.2
Hermkens, D.M.3
Roukens, M.G.4
Fischer, J.C.5
Peterson-Maduro, J.6
Duckers, H.7
Ober, E.A.8
Ingham, P.W.9
Schulte-Merker, S.10
-
54
-
-
84870043996
-
Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling
-
Wu B., Zhang Z., Lui W., Chen X., Wang Y., Chamberlain A.A., Moreno-Rodriguez R.A., Markwald R.R., O'Rourke B.P., Sharp D.J., et al. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell 2012, 151:1083-1096.
-
(2012)
Cell
, vol.151
, pp. 1083-1096
-
-
Wu, B.1
Zhang, Z.2
Lui, W.3
Chen, X.4
Wang, Y.5
Chamberlain, A.A.6
Moreno-Rodriguez, R.A.7
Markwald, R.R.8
O'Rourke, B.P.9
Sharp, D.J.10
-
55
-
-
84880512956
-
ETS factors regulate Vegf-dependent arterial specification
-
Wythe J.D., Dang L.T., Devine W.P., Boudreau E., Artap S.T., He D., Schachterle W., Stainier D.Y., Oettgen P., Black B.L., et al. ETS factors regulate Vegf-dependent arterial specification. Dev. Cell 2013, 26:45-58.
-
(2013)
Dev. Cell
, vol.26
, pp. 45-58
-
-
Wythe, J.D.1
Dang, L.T.2
Devine, W.P.3
Boudreau, E.4
Artap, S.T.5
He, D.6
Schachterle, W.7
Stainier, D.Y.8
Oettgen, P.9
Black, B.L.10
-
56
-
-
84923281901
-
Arteries are formed by vein-derived endothelial tip cells
-
Xu C., Hasan S.S., Schmidt I., Rocha S.F., Pitulescu M.E., Bussmann J., Meyen D., Raz E., Adams R.H., Siekmann A.F. Arteries are formed by vein-derived endothelial tip cells. Nat. Commun. 2014, 5:5758.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5758
-
-
Xu, C.1
Hasan, S.S.2
Schmidt, I.3
Rocha, S.F.4
Pitulescu, M.E.5
Bussmann, J.6
Meyen, D.7
Raz, E.8
Adams, R.H.9
Siekmann, A.F.10
-
57
-
-
84893350246
-
Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration
-
Zhao L., Borikova A.L., Ben-Yair R., Guner-Ataman B., MacRae C.A., Lee R.T., Burns C.G., Burns C.E. Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc. Natl. Acad. Sci. USA 2014, 111:1403-1408.
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. 1403-1408
-
-
Zhao, L.1
Borikova, A.L.2
Ben-Yair, R.3
Guner-Ataman, B.4
MacRae, C.A.5
Lee, R.T.6
Burns, C.G.7
Burns, C.E.8
|