메뉴 건너뛰기




Volumn 8, Issue 1, 2015, Pages 332-349

Estimation of air surface temperature from remote sensing images and pixelwise modeling of the estimation uncertainty through support vector machines

Author keywords

Air temperature estimation; Clark's approximation; expectation maximization; nonstationary parameter estimation; Powell's algorithm; span bound; support vector machine (SVM)

Indexed keywords

ALGORITHMS; APPROXIMATION ALGORITHMS; EARTH (PLANET); ERROR STATISTICS; IMAGE RECONSTRUCTION; IMAGE SEGMENTATION; MAXIMUM PRINCIPLE; METEOROLOGY; OCEANOGRAPHY; RANDOM PROCESSES; REMOTE SENSING; SOLAR ENERGY; STOCHASTIC SYSTEMS; SUPPORT VECTOR MACHINES; SURFACE PROPERTIES; SURFACE WATERS; TEMPERATURE DISTRIBUTION; UNCERTAINTY ANALYSIS;

EID: 84929470782     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2014.2361862     Document Type: Article
Times cited : (12)

References (68)
  • 1
    • 84863338090 scopus 로고    scopus 로고
    • Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations
    • M. Decker et al., "Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations, " J. Clim., vol. 25, no. 6, pp. 1916-1944, 2012.
    • (2012) J. Clim. , vol.25 , Issue.6 , pp. 1916-1944
    • Decker, M.1
  • 2
    • 84870700696 scopus 로고    scopus 로고
    • Analysis of temperature series: Estimation of missing data and homogeneity test
    • M. Firat, F. Dikbas, A. Cem Koc, and M. Gungor, "Analysis of temperature series: Estimation of missing data and homogeneity test, " Meteorol. Appl., vol. 19, no. 4, pp. 397-406, 2012.
    • (2012) Meteorol. Appl. , vol.19 , Issue.4 , pp. 397-406
    • Firat, M.1    Dikbas, F.2    Cem Koc, A.3    Gungor, M.4
  • 3
    • 33750840482 scopus 로고    scopus 로고
    • Prediction of continental-scale evapotranspiration by combining MODIS and AmeriFlux data through support vector machine
    • Nov.
    • F. Yang et al., "Prediction of continental-scale evapotranspiration by combining MODIS and AmeriFlux data through support vector machine, " IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3452-3461, Nov. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3452-3461
    • Yang, F.1
  • 4
    • 67649651713 scopus 로고    scopus 로고
    • Parameterization of air temperature in high temporal and spatial resolution from a combination of the SEVIRI and MODIS instruments
    • K. Zakšeka and M. Schroedter-Homscheidtb, "Parameterization of air temperature in high temporal and spatial resolution from a combination of the SEVIRI and MODIS instruments, " ISPRS J. Photogramm. Remote Sens., vol. 64, no. 4, pp. 414-421, 2009.
    • (2009) ISPRS J. Photogramm. Remote Sens. , vol.64 , Issue.4 , pp. 414-421
    • Zakšeka, K.1    Schroedter-Homscheidtb, M.2
  • 5
    • 0031391589 scopus 로고    scopus 로고
    • Mapping regional air temperature fields using satellite derived surface skin temperatures
    • J. Vogt, A. A. Viau, and F. Paquet, "Mapping regional air temperature fields using satellite derived surface skin temperatures, " Int. J. Clim., vol. 17, pp. 1559-1579, 1997.
    • (1997) Int. J. Clim. , vol.17 , pp. 1559-1579
    • Vogt, J.1    Viau, A.A.2    Paquet, F.3
  • 6
    • 84866529050 scopus 로고    scopus 로고
    • Satellite air temperature estimation for monitoring the canopy layer heat island of Milan
    • M. Pichierri, S. Bonafoni, and R. Biondi, "Satellite air temperature estimation for monitoring the canopy layer heat island of Milan, " Remote Sens. Environ., vol. 127, pp. 130-138, 2012.
    • (2012) Remote Sens. Environ. , vol.127 , pp. 130-138
    • Pichierri, M.1    Bonafoni, S.2    Biondi, R.3
  • 7
    • 0033560518 scopus 로고    scopus 로고
    • Estimating surface air temperatures, from Meteosat land surface temperatures, using an empirical solar zenith angle model
    • M. P. Cresswell, A. P. Morse, M. C. Thomson, and S. J. Connor, "Estimating surface air temperatures, from Meteosat land surface temperatures, using an empirical solar zenith angle model, " Int. J. Remote Sens., vol. 20, no. 6, pp. 1125-1132, 1999.
    • (1999) Int. J. Remote Sens. , vol.20 , Issue.6 , pp. 1125-1132
    • Cresswell, M.P.1    Morse, A.P.2    Thomson, M.C.3    Connor, S.J.4
  • 8
    • 8744225698 scopus 로고    scopus 로고
    • Neural network estimation of air temperatures from AVHRR data
    • J.-D. Jang, A. A. Viau, and F. Anctil, "Neural network estimation of air temperatures from AVHRR data, " Int. J. Remote Sens., vol. 25, no. 21, pp. 4541-4554, 2004.
    • (2004) Int. J. Remote Sens. , vol.25 , Issue.21 , pp. 4541-4554
    • Jang, J.-D.1    Viau, A.A.2    Anctil, F.3
  • 9
    • 0031171103 scopus 로고    scopus 로고
    • Estimation of air temperature from remotely sensed surface observations
    • L. Prihodko and S. N. Goward, "Estimation of air temperature from remotely sensed surface observations, " Remote Sens. Environ., vol. 60, no. 3, pp. 335-346, 1997.
    • (1997) Remote Sens. Environ. , vol.60 , Issue.3 , pp. 335-346
    • Prihodko, L.1    Goward, S.N.2
  • 10
    • 34547416619 scopus 로고    scopus 로고
    • Estimation of diurnal air temperature using MSG SEVIRI data in West Africa
    • S. Stisen, I. Sandholt, A. Nørgaard, R. Fensholt, and L. Eklundh, "Estimation of diurnal air temperature using MSG SEVIRI data in West Africa, " Remote Sens. Environ., vol. 110, no. 3, pp. 262-274, 2007.
    • (2007) Remote Sens. Environ. , vol.110 , Issue.3 , pp. 262-274
    • Stisen, S.1    Sandholt, I.2    Nørgaard, A.3    Fensholt, R.4    Eklundh, L.5
  • 11
    • 77958109035 scopus 로고    scopus 로고
    • Air temperature estimation with MSG-SEVIRI data: Calibration and validation of the TVX algorithm for the Iberian Peninsula
    • H. Nieto, I. Sandholt, I. Aguado, E. Chuvieco, and S. Stisen, "Air temperature estimation with MSG-SEVIRI data: Calibration and validation of the TVX algorithm for the Iberian Peninsula, " Remote Sens. Environ., vol. 115, no. 2, pp. 107-116, 2011.
    • (2011) Remote Sens. Environ. , vol.115 , Issue.2 , pp. 107-116
    • Nieto, H.1    Sandholt, I.2    Aguado, I.3    Chuvieco, E.4    Stisen, S.5
  • 12
    • 14044255366 scopus 로고    scopus 로고
    • Air temperature retrieval from remote sensing data based on thermodynamics
    • Y. J. Sun et al., "Air temperature retrieval from remote sensing data based on thermodynamics, " Theor. Appl. Clim., vol. 80, no. 1, pp. 37-48, 2005.
    • (2005) Theor. Appl. Clim. , vol.80 , Issue.1 , pp. 37-48
    • Sun, Y.J.1
  • 13
    • 0345515985 scopus 로고    scopus 로고
    • A comparative study of algorithms for estimating land surface temperature from AVHRR data
    • D. P. Vazquez, F. J. O. Reyes, and L. A. Arboledas, "A comparative study of algorithms for estimating land surface temperature from AVHRR data, " Remote Sens. Environ., vol. 62, no. 3, pp. 215-222, 1997.
    • (1997) Remote Sens. Environ. , vol.62 , Issue.3 , pp. 215-222
    • Vazquez, D.P.1    Reyes, F.J.O.2    Arboledas, L.A.3
  • 15
    • 33750954695 scopus 로고    scopus 로고
    • Simulation of global land surface conditions from 1948 to 2004. Part I: Forcing data and evaluations
    • T. Qian, A. Dai, K. E. Trenberth, and K. W. Oleson, "Simulation of global land surface conditions from 1948 to 2004. Part I: Forcing data and evaluations, " J. Hydrometeorol., vol. 7, no. 5, pp. 953-975, 2006.
    • (2006) J. Hydrometeorol. , vol.7 , Issue.5 , pp. 953-975
    • Qian, T.1    Dai, A.2    Trenberth, K.E.3    Oleson, K.W.4
  • 16
    • 84880699358 scopus 로고    scopus 로고
    • A simplified extended Kalman filter for the global operational soil moisture analysis at ECMWF
    • P. De Rosnay et al., "A simplified extended Kalman filter for the global operational soil moisture analysis at ECMWF, " Quart. J. Roy. Meteorol. Soc., vol. 139, no. 674, pp. 1199-1213, 2013.
    • (2013) Quart. J. Roy. Meteorol. Soc. , vol.139 , Issue.674 , pp. 1199-1213
    • De Rosnay, P.1
  • 17
    • 61349168387 scopus 로고    scopus 로고
    • Automatic parameter optimization for support vector regression for land and sea surface temperature estimation from remote-sensing data
    • Mar.
    • G. Moser and S. B. Serpico, "Automatic parameter optimization for support vector regression for land and sea surface temperature estimation from remote-sensing data, " IEEE Trans. Geosci. Remote Sensing, vol. 47, no. 3, pp. 909-921, Mar. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sensing , vol.47 , Issue.3 , pp. 909-921
    • Moser, G.1    Serpico, S.B.2
  • 18
    • 67651169838 scopus 로고    scopus 로고
    • Land and sea surface temperature estimation by support vector regression
    • G. Camps-Valls and L. Bruzzone, Eds. Hoboken, NJ, USA: Wiley
    • G. Moser and S. B. Serpico, "Land and sea surface temperature estimation by support vector regression, " in Kernel Methods for Remote Sensing Data Analysis, G. Camps-Valls and L. Bruzzone, Eds. Hoboken, NJ, USA: Wiley, 2009, pp. 301-325.
    • (2009) Kernel Methods for Remote Sensing Data Analysis , pp. 301-325
    • Moser, G.1    Serpico, S.B.2
  • 20
    • 1142269676 scopus 로고    scopus 로고
    • Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax site
    • J. A. Sobrino, J. C. Jimenez-Munoz, M. El-Kharraz-Gomez, M. Romaguera, and G. Soria, "Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax site, " Int. J. Remote Sens., vol. 25, no. 1, pp. 215-230, 2004.
    • (2004) Int. J. Remote Sens. , vol.25 , Issue.1 , pp. 215-230
    • Sobrino, J.A.1    Jimenez-Munoz, J.C.2    El-Kharraz-Gomez, M.3    Romaguera, M.4    Soria, G.5
  • 21
    • 67651154157 scopus 로고    scopus 로고
    • Modeling the error statistics in support vector regression of surface temperature from infrared data
    • Jul.
    • G. Moser and S. B. Serpico, "Modeling the error statistics in support vector regression of surface temperature from infrared data, " IEEE Geosci. Remote Sens. Lett., vol. 6, no. 3, pp. 448-452, Jul. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.3 , pp. 448-452
    • Moser, G.1    Serpico, S.B.2
  • 23
    • 77954625423 scopus 로고    scopus 로고
    • Gaussian process regression for estimating chlorophyll concentration in subsurface waters from remote sensing data
    • Jul.
    • L. Pasolli, F. Melgani, and E. Blanzieri, "Gaussian process regression for estimating chlorophyll concentration in subsurface waters from remote sensing data, " IEEE Geosci. Remote Sens. Lett., vol. 7, no. 3, pp. 464-468, Jul. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.3 , pp. 464-468
    • Pasolli, L.1    Melgani, F.2    Blanzieri, E.3
  • 24
    • 84863009799 scopus 로고    scopus 로고
    • Improved estimation of water chlorophyll concentration with semisupervised Gaussian process regression
    • Jul.
    • Y. Bazi, N. Alajlan, and F. Melgani, "Improved estimation of water chlorophyll concentration with semisupervised Gaussian process regression, " IEEE Trans. Geosci. Remote Sens., vol. 50, no. 7, pp. 2733-2743, Jul. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.7 , pp. 2733-2743
    • Bazi, Y.1    Alajlan, N.2    Melgani, F.3
  • 26
    • 75449116948 scopus 로고    scopus 로고
    • Gaussian process approach to buried object size estimation in GPR images
    • Jan.
    • E. Pasolli, F. Melgani, and M. Donelli, "Gaussian process approach to buried object size estimation in GPR images, " IEEE Geosci. Remote Sens. Lett., vol. 7, no. 1, pp. 141-145, Jan. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.1 , pp. 141-145
    • Pasolli, E.1    Melgani, F.2    Donelli, M.3
  • 27
    • 79960363460 scopus 로고    scopus 로고
    • A scalable Gaussian process analysis algorithm for biomass monitoring
    • V. Chandola and R. R. Vatsavai, "A scalable Gaussian process analysis algorithm for biomass monitoring, " Stat. Anal. Data Mining, vol. 4, no. 4, pp. 430-445, 2011.
    • (2011) Stat. Anal. Data Mining , vol.4 , Issue.4 , pp. 430-445
    • Chandola, V.1    Vatsavai, R.R.2
  • 29
    • 0001310038 scopus 로고
    • The greatest of a finite set of random variables
    • C. Clark, "The greatest of a finite set of random variables, " Oper. Res., vol. 9, no. 2, pp. 145-162, 1961.
    • (1961) Oper. Res. , vol.9 , Issue.2 , pp. 145-162
    • Clark, C.1
  • 31
    • 77951295143 scopus 로고    scopus 로고
    • Computing bounds on the expected maximum of correlated normal variables
    • A. M. Ross, "Computing bounds on the expected maximum of correlated normal variables, " Methodol. Comput. Appl. Probab., vol. 12, no. 1, pp. 111-138, 2010.
    • (2010) Methodol. Comput. Appl. Probab. , vol.12 , Issue.1 , pp. 111-138
    • Ross, A.M.1
  • 32
    • 0035284320 scopus 로고    scopus 로고
    • Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values
    • T. Schneider, "Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values, " J. Clim., vol. 14, no. 5, pp. 853-871, 2001.
    • (2001) J. Clim. , vol.14 , Issue.5 , pp. 853-871
    • Schneider, T.1
  • 33
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood, and the em algorithm
    • R. A. Redner and H. F. Walker, "Mixture densities, maximum likelihood, and the EM algorithm, " SIAM Rev., vol. 26, no. 2, pp. 195-239, 1984.
    • (1984) SIAM Rev. , vol.26 , Issue.2 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 35
    • 0142259818 scopus 로고    scopus 로고
    • Radial basis function and multilayer perceptron neural networks for sea water optically active parameter estimation in Case II waters: A comparison
    • G. Corsini et al., "Radial basis function and multilayer perceptron neural networks for sea water optically active parameter estimation in Case II waters: A comparison, " Int. J. Remote Sens., vol. 24, no. 20, pp. 3917-3932, 2003.
    • (2003) Int. J. Remote Sens. , vol.24 , Issue.20 , pp. 3917-3932
    • Corsini, G.1
  • 36
    • 38349098973 scopus 로고    scopus 로고
    • Soil moisture retrieval from remotely sensed data: Neural network approach versus Bayesian method
    • Jan.
    • C. Notarnicola, M. Angiulli, and F. Posa, "Soil moisture retrieval from remotely sensed data: Neural network approach versus Bayesian method, " IEEE Trans. Geosci. Remote Sens., vol. 46, no. 2, pp. 547-557, Jan. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.2 , pp. 547-557
    • Notarnicola, C.1    Angiulli, M.2    Posa, F.3
  • 37
    • 77954620770 scopus 로고    scopus 로고
    • Application of artificial neural networks for sea-surface wind-speed retrieval from IRS-P4 (MSMR) brightness temperature
    • Jul.
    • B. Jena, D. Swain, and A. Tyagi, "Application of artificial neural networks for sea-surface wind-speed retrieval from IRS-P4 (MSMR) brightness temperature, " IEEE Geosci. Remote Sens. Lett., vol. 7, no. 3, pp. 567-571, Jul. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.3 , pp. 567-571
    • Jena, B.1    Swain, D.2    Tyagi, A.3
  • 39
    • 84885019653 scopus 로고    scopus 로고
    • Combining support vector machines and Markov random fields in an integrated framework for contextual image classification
    • May
    • G. Moser and S. B. Serpico "Combining support vector machines and Markov random fields in an integrated framework for contextual image classification, " IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2734-2752, May 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.5 , pp. 2734-2752
    • Moser, G.1    Serpico, S.B.2
  • 41
    • 14644402381 scopus 로고    scopus 로고
    • Partially supervised classification of remote-sensing images through SVM-based probability density estimation
    • Mar.
    • P. Mantero, G. Moser, and S. B. Serpico, "Partially supervised classification of remote-sensing images through SVM-based probability density estimation, " IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 559-570, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 559-570
    • Mantero, P.1    Moser, G.2    Serpico, S.B.3
  • 42
    • 34249816831 scopus 로고    scopus 로고
    • Semisupervised PSO-SVM regression for biophysical parameter estimation
    • Jun.
    • Y. Bazi and F. Melgani, "Semisupervised PSO-SVM regression for biophysical parameter estimation, " IEEE Trans. Geosci. Remote Sens., vol. 45, no. 6, pp. 1887-1895, Jun. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.6 , pp. 1887-1895
    • Bazi, Y.1    Melgani, F.2
  • 43
    • 84867073344 scopus 로고    scopus 로고
    • Active learning methods for biophysical parameter estimation
    • Oct.
    • E. Pasolli, F. Melgani, N. Alajlan, and Y. Bazi, "Active learning methods for biophysical parameter estimation, " IEEE Trans. Geosci. Remote Sens., vol. 50, no. 10, pp. 4071-4084, Oct. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.10 , pp. 4071-4084
    • Pasolli, E.1    Melgani, F.2    Alajlan, N.3    Bazi, Y.4
  • 44
    • 12844286965 scopus 로고    scopus 로고
    • Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data
    • Jan.
    • L. Bruzzone and F. Melgani, "Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data, " IEEE Trans. Geosci. Remote Sens., vol. 43, no. 1, pp. 159-173, Jan. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.1 , pp. 159-173
    • Bruzzone, L.1    Melgani, F.2
  • 45
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training SVM
    • R.-E. Fan, P.-H. Chen, and C.-J. Lin, "Working set selection using second order information for training SVM, " J. Mach. Learn. Res., vol. 6, pp. 1889-1918, 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3
  • 47
    • 17444398555 scopus 로고    scopus 로고
    • Leave-one-out bounds for support vector regression model selection
    • M.-W. Chang and C.-J. Lin, "Leave-one-out bounds for support vector regression model selection, " Neural Comp., vol. 17, no. 5, pp. 1188-1222, 2005.
    • (2005) Neural Comp. , vol.17 , Issue.5 , pp. 1188-1222
    • Chang, M.-W.1    Lin, C.-J.2
  • 48
    • 0001008029 scopus 로고
    • An efficient method for finding the minimum of a function of several variables without calculating derivatives
    • J. D. Powell, "An efficient method for finding the minimum of a function of several variables without calculating derivatives, " Comp. J., vol. 7, no. 2, pp. 155-162, 1964.
    • (1964) Comp. J. , vol.7 , Issue.2 , pp. 155-162
    • Powell, J.D.1
  • 50
    • 84883552913 scopus 로고    scopus 로고
    • Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011
    • J. Barichivich et al., "Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011, " Global Change Biol., vol. 19, no. 10, pp. 3167-3183, 2013.
    • (2013) Global Change Biol. , vol.19 , Issue.10 , pp. 3167-3183
    • Barichivich, J.1
  • 54
    • 1242331293 scopus 로고    scopus 로고
    • Bayesian support vector regression with a unified loss function
    • Jan.
    • W. Chu, S. Keerthi, and C. J. Ong, "Bayesian support vector regression with a unified loss function, " IEEE Trans. Neural Netw., vol. 15, no. 1, pp. 29-44, Jan. 2004.
    • (2004) IEEE Trans. Neural Netw. , vol.15 , Issue.1 , pp. 29-44
    • Chu, W.1    Keerthi, S.2    Ong, C.J.3
  • 55
    • 0036161010 scopus 로고    scopus 로고
    • A probabilistic framework for SVM regression and error bar estimation
    • J. B. Gao, S. R. Gunn, C. J. Harris, and M. Brown "A probabilistic framework for SVM regression and error bar estimation, " Mach. Learn., vol. 46, no. 1-3, pp. 71-89, 2002.
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 71-89
    • Gao, J.B.1    Gunn, S.R.2    Harris, C.J.3    Brown, M.4
  • 56
    • 0037239497 scopus 로고    scopus 로고
    • Mean field method for the support vector machine regression
    • J. B. Gao, S. R. Gunn, and C. J. Harris, "Mean field method for the support vector machine regression, " Neurocomputing, vol. 50, pp. 391-405, 2003.
    • (2003) Neurocomputing , vol.50 , pp. 391-405
    • Gao, J.B.1    Gunn, S.R.2    Harris, C.J.3
  • 57
    • 0242383459 scopus 로고    scopus 로고
    • SVM regression through variational methods and its sequential implementation
    • J. B. Gao, S. R. Gunn, and C. J. Harris, "SVM regression through variational methods and its sequential implementation, " Neurocomputing, vol. 55, no. 1-2, pp. 151-167, 2003.
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 151-167
    • Gao, J.B.1    Gunn, S.R.2    Harris, C.J.3
  • 58
    • 84869471500 scopus 로고    scopus 로고
    • Markov random fields in image segmentation
    • Z. Kato and J. Zerubia, "Markov random fields in image segmentation, " Found. Trends Signal Process., vol. 5, no. 1-2, pp. 1-155, 2011.
    • (2011) Found. Trends Signal Process. , vol.5 , Issue.1-2 , pp. 1-155
    • Kato, Z.1    Zerubia, J.2
  • 59
    • 84884699669 scopus 로고    scopus 로고
    • Pairwise comparisons to reconstruct mean temperature in the Arctic Atlantic Region over the last 2, 000 years
    • S. Hanhijärvi, M. P. Tingley, and A. Korhola, "Pairwise comparisons to reconstruct mean temperature in the Arctic Atlantic Region over the last 2, 000 years, " Clim. Dyn., vol. 41, no. 7-8, pp. 2039-2060, 2013.
    • (2013) Clim. Dyn. , vol.41 , Issue.7-8 , pp. 2039-2060
    • Hanhijärvi, S.1    Tingley, M.P.2    Korhola, A.3
  • 60
    • 58149096838 scopus 로고    scopus 로고
    • Comparison of climate field reconstruction techniques: Application to Europe
    • N. Riedwyl, M. Küttel, J. Luterbacher, and H. Wanner, "Comparison of climate field reconstruction techniques: Application to Europe, " Clim. Dyn., vol. 32, no. 2-3, pp. 381-395, 2009.
    • (2009) Clim. Dyn. , vol.32 , Issue.2-3 , pp. 381-395
    • Riedwyl, N.1    Küttel, M.2    Luterbacher, J.3    Wanner, H.4
  • 61
    • 84876445448 scopus 로고    scopus 로고
    • The effect of the relative humidity and the specific humidity on the determination of the climate regions in Turkey
    • S. Sahin and H. K. Cigizoglu, "The effect of the relative humidity and the specific humidity on the determination of the climate regions in Turkey, " Theor. Appl. Clim., vol. 112, no. 3-4, pp. 469-481, 2013.
    • (2013) Theor. Appl. Clim. , vol.112 , Issue.3-4 , pp. 469-481
    • Sahin, S.1    Cigizoglu, H.K.2
  • 62
    • 78650911205 scopus 로고    scopus 로고
    • Land cover classification of cloud-contaminated multitemporal high-resolution images
    • Jan.
    • A.-B. Salberg, "Land cover classification of cloud-contaminated multitemporal high-resolution images, " IEEE Trans. Geosci. Remote Sens., vol. 49, no. 1, pp. 377-387, Jan. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.1 , pp. 377-387
    • Salberg, A.-B.1
  • 66
    • 84886588334 scopus 로고    scopus 로고
    • Finite asymmetric generalized Gaussian mixture models learning for infrared object detection
    • T. Elguebaly and N. Bouguila, "Finite asymmetric generalized Gaussian mixture models learning for infrared object detection, " Comput. Vis. Image Understand., vol. 117, no. 12, pp. 1659-1671, 2013.
    • (2013) Comput. Vis. Image Understand. , vol.117 , Issue.12 , pp. 1659-1671
    • Elguebaly, T.1    Bouguila, N.2
  • 67
    • 84892371351 scopus 로고    scopus 로고
    • Domain adaptation and sample bias correction theory and algorithm for regression
    • C. Cortes and M. Mohri, "Domain adaptation and sample bias correction theory and algorithm for regression, " Theor. Comput. Sci., vol. 519, pp. 103-126, 2014.
    • (2014) Theor. Comput. Sci. , vol.519 , pp. 103-126
    • Cortes, C.1    Mohri, M.2
  • 68
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. Smola, and K.-R. Müller, "Nonlinear component analysis as a kernel eigenvalue problem, " Neural Comput., vol. 10, pp. 1299-1319, 1998.
    • (1998) Neural Comput. , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.