메뉴 건너뛰기




Volumn 43, Issue 1, 2005, Pages 159-173

Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data

Author keywords

Biophysical parameters; Estimation; Multilayer perceptron (MLP) neural networks; Multiple estimator systems; Radial basis function (RBF) neural networks; Regression; Remote sensing; Support vector machines (SVMs)

Indexed keywords

NEURAL NETWORKS; PARAMETER ESTIMATION; REGRESSION ANALYSIS; ROBUSTNESS (CONTROL SYSTEMS); SYNTHETIC APERTURE RADAR; WATER QUALITY;

EID: 12844286965     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2004.839818     Document Type: Article
Times cited : (88)

References (42)
  • 1
    • 0035575139 scopus 로고    scopus 로고
    • Comparison of methods for estimation of Kyoto protocol products of forests from multitemporal Landsat
    • D. G. Goodenough, A. S. Bhogall, H. Chen, and A. Dyk, "Comparison of methods for estimation of Kyoto protocol products of forests from multitemporal Landsat," in Proc. IGARSS, vol. 2, 2001, pp. 764-767.
    • (2001) Proc. IGARSS , vol.2 , pp. 764-767
    • Goodenough, D.G.1    Bhogall, A.S.2    Chen, H.3    Dyk, A.4
  • 3
    • 0036821340 scopus 로고    scopus 로고
    • Application of neural algorithms for a real-time estimation of ozone profiles from GOME measurements
    • Oct.
    • F. Del Frate, A. Ortenzi, S. Casadio, and C. Zehner, "Application of neural algorithms for a real-time estimation of ozone profiles from GOME measurements," IEEE Trans. Geosci. Remote. Sens., vol. 40, no. 10, pp. 2263-2270, Oct. 2002.
    • (2002) IEEE Trans. Geosci. Remote. Sens. , vol.40 , Issue.10 , pp. 2263-2270
    • Del Frate, F.1    Ortenzi, A.2    Casadio, S.3    Zehner, C.4
  • 4
    • 0038033061 scopus 로고    scopus 로고
    • A system for monitoring NO2 emissions from biomass burning by using GOME and ATSR-2 data
    • L. Bruzzone, S. Casadio, R. Cossu, F. Sini, and C. Zehner, "A system for monitoring NO2 emissions from biomass burning by using GOME and ATSR-2 data," Int. J. Remote Sens., vol. 24, pp. 1709-1721, 2002.
    • (2002) Int. J. Remote Sens. , vol.24 , pp. 1709-1721
    • Bruzzone, L.1    Casadio, S.2    Cossu, R.3    Sini, F.4    Zehner, C.5
  • 5
    • 0016341420 scopus 로고
    • Coastal and estuarine studies with ERST-1 and Skylab
    • [S] V. Klemas, D. Bartlett, W. Philpot, and R. Roger, "Coastal and estuarine studies with ERST-1 and Skylab," Remote Sens. Environ., vol. 3, pp. 153-177, 1974.
    • (1974) Remote Sens. Environ. , vol.3 , pp. 153-177
    • Klemas, V.1    Bartlett, D.2    Philpot, W.3    Roger, R.4
  • 6
    • 0020545574 scopus 로고
    • Phytoplankton pigment concentrations in the Middle Atlantic Bight: Comparison of ship determinations and CZCS estimates
    • H. Gordon, D. Clark, J. Brown, O. Brown, R. Evans, and W. Broenkow, "Phytoplankton pigment concentrations in the Middle Atlantic Bight: Comparison of ship determinations and CZCS estimates," Appl. Opt., vol. 22, pp. 20-36, 1983.
    • (1983) Appl. Opt. , vol.22 , pp. 20-36
    • Gordon, H.1    Clark, D.2    Brown, J.3    Brown, O.4    Evans, R.5    Broenkow, W.6
  • 7
    • 0023438585 scopus 로고
    • Evaluation of the potential of the Thematic Mapper for marine applications
    • S. Tassan, "Evaluation of the potential of the Thematic Mapper for marine applications," Int. J. Remote Sens., vol. 8, pp. 1455-1478, 1987.
    • (1987) Int. J. Remote Sens. , vol.8 , pp. 1455-1478
    • Tassan, S.1
  • 8
    • 0024782607 scopus 로고
    • Calibration of a general optical equation for remote sensing of suspendent sediments in a moderately turbid estuary
    • R. Stumpf and J. Pennock, "Calibration of a general optical equation for remote sensing of suspendent sediments in a moderately turbid estuary," J. Geophys. Res., vol. 94, no. C10, pp. 14.363-14.371, 1989.
    • (1989) J. Geophys. Res. , vol.94 , Issue.C10
    • Stumpf, R.1    Pennock, J.2
  • 9
    • 0019999432 scopus 로고
    • Criteria for the use of regression analysis for remote sensing of sediment and pollutants
    • C. Whitlock, C. Kuo, and S. LeCroy, "Criteria for the use of regression analysis for remote sensing of sediment and pollutants," Remote Sens. Environ., vol. 12, pp. 151-168, 1982.
    • (1982) Remote Sens. Environ. , vol.12 , pp. 151-168
    • Whitlock, C.1    Kuo, C.2    LeCroy, S.3
  • 10
    • 0022927202 scopus 로고
    • Use of Thematic Mapper data to assess water quality in Green Bay and central Lake Michigan
    • R. Lathrop and T. Lillesand, "Use of Thematic Mapper data to assess water quality in Green Bay and central Lake Michigan," Photogramm. Eng. Remote Sens., vol. 52, pp. 671-680, 1986.
    • (1986) Photogramm. Eng. Remote Sens. , vol.52 , pp. 671-680
    • Lathrop, R.1    Lillesand, T.2
  • 12
    • 0036326469 scopus 로고    scopus 로고
    • Large area operational wheat yield model development and validation based on spectral and meteorological data
    • K. R. Manjunath, M. B. Potdar, and N. L. Purohit, "Large area operational wheat yield model development and validation based on spectral and meteorological data," Int. J. Remote Sens., vol. 23, pp. 3023-3038, 2002.
    • (2002) Int. J. Remote Sens. , vol.23 , pp. 3023-3038
    • Manjunath, K.R.1    Potdar, M.B.2    Purohit, N.L.3
  • 13
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Networks, vol. 2, pp. 359-366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 14
    • 0344326232 scopus 로고    scopus 로고
    • A neural network model for estimating sea surface chlorophyll and sediments from Thematic Mapper imagery
    • L. Keiner and X.-H. Yan, "A neural network model for estimating sea surface chlorophyll and sediments from Thematic Mapper imagery," Remote Sens. Environ., vol. 66, pp. 153-165, 1998.
    • (1998) Remote Sens. Environ. , vol.66 , pp. 153-165
    • Keiner, L.1    Yan, X.-H.2
  • 15
    • 0442311260 scopus 로고    scopus 로고
    • Phytoplankton determination in an optically complex coastal region using a multilayer perceptron neural network
    • Dec.
    • D. D'Alimonte and G. Zibordi, "Phytoplankton determination in an optically complex coastal region using a multilayer perceptron neural network," IEEE Trans. Geosci. Remote. Sens., vol. 41, no. 12, pp. 2861-2868, Dec. 2003.
    • (2003) IEEE Trans. Geosci. Remote. Sens. , vol.41 , Issue.12 , pp. 2861-2868
    • D'Alimonte, D.1    Zibordi, G.2
  • 16
    • 0035391688 scopus 로고    scopus 로고
    • Retrieval of sea water optically active parameters from hyperspectral data by means of generalized radial basis function neural networks
    • Jul.
    • P. Cipollini, G. Corsini, M. Diani, and R. Grasso, "Retrieval of sea water optically active parameters from hyperspectral data by means of generalized radial basis function neural networks," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1508-1524, Jul. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.7 , pp. 1508-1524
    • Cipollini, P.1    Corsini, G.2    Diani, M.3    Grasso, R.4
  • 18
    • 0026692226 scopus 로고
    • Stacked generalization
    • D. H. Wolpert, "Stacked generalization," Neural Networks, vol. 5, pp. 241-259, 1992.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 20
    • 0032675169 scopus 로고    scopus 로고
    • A principal components approach to combining regression estimates
    • C. J. Merz and M. J. Pazzani, "A principal components approach to combining regression estimates," Mach. Learn., vol. 36, no. 1-2, pp. 9-32, 1999.
    • (1999) Mach. Learn. , vol.36 , Issue.1-2 , pp. 9-32
    • Merz, C.J.1    Pazzani, M.J.2
  • 21
  • 22
    • 0031121318 scopus 로고    scopus 로고
    • Combination of multiple classifiers using local accuracy estimates
    • Apr.
    • K. Woods, K. Bowyer, and W. P. Kegelmeyer, "Combination of multiple classifiers using local accuracy estimates," IEEE Trans. Pattern Anal. Much. Intell., vol. 19, no. 4, pp. 405-410, Apr. 1997.
    • (1997) IEEE Trans. Pattern Anal. Much. Intell. , vol.19 , Issue.4 , pp. 405-410
    • Woods, K.1    Bowyer, K.2    Kegelmeyer, W.P.3
  • 25
    • 0036821351 scopus 로고    scopus 로고
    • Multiple classifiers applied to multisource remote sensing data
    • Oct.
    • G. J. Briem, J. A. Benediktsson, and J. R. Sveinsson, "Multiple classifiers applied to multisource remote sensing data," IEEE Trans. Geosci. Remote. Sens., vol. 40, no. 10, pp. 2291-2299, Oct. 2002.
    • (2002) IEEE Trans. Geosci. Remote. Sens. , vol.40 , Issue.10 , pp. 2291-2299
    • Briem, G.J.1    Benediktsson, J.A.2    Sveinsson, J.R.3
  • 26
    • 0036762743 scopus 로고    scopus 로고
    • A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps
    • Sep.
    • L. Bruzzone and R. Cossu, "A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps," IEEE Trans. Geosci. Remote. Sens., vol. 40, no. 9, pp. 1984-1996, Sep. 2002.
    • (2002) IEEE Trans. Geosci. Remote. Sens. , vol.40 , Issue.9 , pp. 1984-1996
    • Bruzzone, L.1    Cossu, R.2
  • 33
    • 0442311258 scopus 로고    scopus 로고
    • Retrieval of oceanic chlorophyll concentration using support vector machines
    • Dec.
    • H. Zhan, P. Shi, and C. Chen, "Retrieval of oceanic chlorophyll concentration using support vector machines," IEEE Trans. Geosci. Remote. Sens., vol. 41, no. 12, pp. 2947-2951, Dec. 2003.
    • (2003) IEEE Trans. Geosci. Remote. Sens. , vol.41 , Issue.12 , pp. 2947-2951
    • Zhan, H.1    Shi, P.2    Chen, C.3
  • 34
    • 0029372769 scopus 로고
    • Methods for combining expert's probability assessment
    • R. A. Jacobs, "Methods for combining expert's probability assessment," Neural Comput., vol. 7, pp. 867-888, 1995.
    • (1995) Neural Comput. , vol.7 , pp. 867-888
    • Jacobs, R.A.1
  • 35
    • 0002843594 scopus 로고
    • The consensus of subjective probability distributions
    • R. L. Winkler, "The consensus of subjective probability distributions," Manage. Sci., vol. 15, pp. B.61-B.75, 1968.
    • (1968) Manage. Sci. , vol.15
    • Winkler, R.L.1
  • 36
    • 0026892150 scopus 로고
    • Consensus theoretic classification methods
    • Jul/Aug.
    • J. A. Benediktsson and P. H. Swain, "Consensus theoretic classification methods," IEEE Trans. Syst., Man, Cybern., A, vol. 22, no. 4, pp. 688-704, Jul/Aug. 1992.
    • (1992) IEEE Trans. Syst., Man, Cybern., A , vol.22 , Issue.4 , pp. 688-704
    • Benediktsson, J.A.1    Swain, P.H.2
  • 38
    • 84994037050 scopus 로고    scopus 로고
    • Dynamic classifier selection based on multiple classifier behavior
    • G. Giacinto and F. Roli, "Dynamic classifier selection based on multiple classifier behavior," Pattern Recognit., vol. 34, pp. 1879-1881, 2001.
    • (2001) Pattern Recognit. , vol.34 , pp. 1879-1881
    • Giacinto, G.1    Roli, F.2
  • 39
    • 0033099197 scopus 로고    scopus 로고
    • A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images
    • Mar.
    • L. Bruzzone and D. Prieto, "A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images," IEEE Trans. Geosci. Remote. Sens., vol. 37. no. 2, pp. 1179-1184, Mar. 1999.
    • (1999) IEEE Trans. Geosci. Remote. Sens. , vol.37 , Issue.2 , pp. 1179-1184
    • Bruzzone, L.1    Prieto, D.2
  • 40
    • 0003401675 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Royal Holloway College. Univ. London, London, U.K.
    • A. Smola and B. Schölkopf, "A tutorial on support vector regression," Royal Holloway College. Univ. London, London, U.K., NeuroCOLT Tech. Rep. NC-TR-98-030, 1998.
    • (1998) NeuroCOLT Tech. Rep. , vol.NC-TR-98-030
    • Smola, A.1    Schölkopf, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.