메뉴 건너뛰기




Volumn , Issue , 2009, Pages 301-325

Land and Sea Surface Temperature Estimation by Support Vector Regression

Author keywords

Generalization error bound concepts used by PSB; Land and sea surface temperature estimation by support vector regression; Land surface temperature (LST) and sea surface temperature (SST) and role in environmental models; LST hydrological and meteorological models and satellite infrared remote sensing; Pixelwise probability distribution of SVR error; Pointwise statistical modelling of SVR error; SEVIRI instrument on board Meteosat Second Generation (MSG); Split window techniques (SWTs) in multiple TIR channels; Support vector classification (SVC); SVR framework methods automating parameter optimization processes

Indexed keywords


EID: 67651169838     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9780470748992.ch13     Document Type: Chapter
Times cited : (4)

References (60)
  • 1
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and Gaussian complexities: risk bounds and structural result
    • Bartlett, P. and Mendelson, S. (2002) Rademacher and Gaussian complexities: risk bounds and structural result. Journal of Machine Learning Research, 3, 463-484.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 463-484
    • Bartlett, P.1    Mendelson, S.2
  • 2
    • 0027039417 scopus 로고
    • Satellite-derived sea surface temperature - a comparison between operational, theoretical, and experimental algorithms
    • Barton, I.J. (1992) Satellite-derived sea surface temperature - a comparison between operational, theoretical, and experimental algorithms. J. Applied Meteorology, 31, 432-442.
    • (1992) J. Applied Meteorology , vol.31 , pp. 432-442
    • Barton, I.J.1
  • 3
    • 34249816831 scopus 로고    scopus 로고
    • Semi-supervised PSO-SVM regression for biophysical parameter estimation
    • Bazi, Y. and Melgani, F. (2007) Semi-supervised PSO-SVM regression for biophysical parameter estimation. IEEE Trans. Geosci. Remote Sensing, 45(6), 1887-1895.
    • (2007) IEEE Trans. Geosci. Remote Sensing , vol.45 , Issue.6 , pp. 1887-1895
    • Bazi, Y.1    Melgani, F.2
  • 4
    • 0035111985 scopus 로고    scopus 로고
    • Sampling strategies and assimilation of ground temperature for the estimation of surface energy balance components
    • Boni, G., Castelli, F. and Entekhabi, D. (2001) Sampling strategies and assimilation of ground temperature for the estimation of surface energy balance components. IEEE Trans. Geosci. Remote Sensing, 39(1), 165-172.
    • (2001) IEEE Trans. Geosci. Remote Sensing , vol.39 , Issue.1 , pp. 165-172
    • Boni, G.1    Castelli, F.2    Entekhabi, D.3
  • 5
    • 0003465464 scopus 로고
    • Algorithms for Minimization without Derivatives
    • Prentice-Hall
    • Brent, R.P. (1973) Algorithms for Minimization without Derivatives. Prentice-Hall.
    • (1973)
    • Brent, R.P.1
  • 6
    • 12844286965 scopus 로고    scopus 로고
    • Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data
    • Bruzzone, L. and Melgani, F. (2005) Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data. IEEE Trans. Geosci. Remote Sensing, 43(1), 159-174.
    • (2005) IEEE Trans. Geosci. Remote Sensing , vol.43 , Issue.1 , pp. 159-174
    • Bruzzone, L.1    Melgani, F.2
  • 7
    • 0003401677 scopus 로고    scopus 로고
    • A Tutorial on Support Vector Machines for Pattern Recognition
    • Kluwer Academic Publishers, Boston, MA, USA
    • Burges, C. (1998) A Tutorial on Support Vector Machines for Pattern Recognition. Kluwer Academic Publishers, Boston, MA, USA.
    • (1998)
    • Burges, C.1
  • 8
    • 33746606930 scopus 로고    scopus 로고
    • Robust support vector regression for biophysical variable estimation from remotely sensed images
    • Camps-Valls, G., Bruzzone, L., Rojo-Álvarez, J.L. and Melgani, F. (2006a) Robust support vector regression for biophysical variable estimation from remotely sensed images. IEEE Trans. Geosci. Remote Sensing, 44(3), 339-343.
    • (2006) IEEE Trans. Geosci. Remote Sensing , vol.44 , Issue.3 , pp. 339-343
    • Camps-Valls, G.1    Bruzzone, L.2    Rojo-Álvarez, J.L.3    Melgani, F.4
  • 10
    • 0038643327 scopus 로고    scopus 로고
    • Mapping of land-atmosphere heat fluxes and surface parameters with remote sensing data
    • Caparrini, F. and Castelli, F. (2003) Mapping of land-atmosphere heat fluxes and surface parameters with remote sensing data. Boundary-Layer Meteorology, 107, 605-633.
    • (2003) Boundary-Layer Meteorology , vol.107 , pp. 605-633
    • Caparrini, F.1    Castelli, F.2
  • 11
    • 27744515748 scopus 로고    scopus 로고
    • A comparison of MODIS, NCEP and TMI sea surface temperature datasets
    • Chan, P.K. and Gao, B.C. (2005) A comparison of MODIS, NCEP and TMI sea surface temperature datasets. IEEE Geosci. Remote Sensing Letters, 2(3), 270-274.
    • (2005) IEEE Geosci. Remote Sensing Letters , vol.2 , Issue.3 , pp. 270-274
    • Chan, P.K.1    Gao, B.C.2
  • 12
    • 17444398555 scopus 로고    scopus 로고
    • Leave-one-out bounds for support vector regression model selection
    • Chang, M.W. and Lin, C.J. (2005) Leave-one-out bounds for support vector regression model selection. Neural Comp., 17, 1188-1222.
    • (2005) Neural Comp. , vol.17 , pp. 1188-1222
    • Chang, M.W.1    Lin, C.J.2
  • 13
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle, O., Vapnik, V., Bousquet, O. and Mukherjee, S. (2002) Choosing multiple parameters for support vector machines. Mach. Learn., 46, 131-159.
    • (2002) Mach. Learn. , vol.46 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 14
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky, V. and Ma, Y. (2003) Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks, 17, 113-126.
    • (2003) Neural Networks , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 15
    • 1242331293 scopus 로고    scopus 로고
    • Bayesian support vector regression with a unified loss function
    • Chu, W., Keerthi, S. and Ong, C.J. (2004) Bayesian support vector regression with a unified loss function. IEEE Trans. Neural Networks, 15, 29-44.
    • (2004) IEEE Trans. Neural Networks , vol.15 , pp. 29-44
    • Chu, W.1    Keerthi, S.2    Ong, C.J.3
  • 16
    • 0141430928 scopus 로고    scopus 로고
    • Radius margin bounds for support vector machines with the RBF kernel
    • Chung, K.M., Kao, W.C., Sun, T., Wang, L.L. and Lin, C.J. (2003) Radius margin bounds for support vector machines with the RBF kernel. Neural Comp., 15, 2643-2681.
    • (2003) Neural Comp. , vol.15 , pp. 2643-2681
    • Chung, K.M.1    Kao, W.C.2    Sun, T.3    Wang, L.L.4    Lin, C.J.5
  • 17
    • 0037063144 scopus 로고    scopus 로고
    • Land surface temperature and emissivity estimation from passive sensor data: theory and pratice - current trends
    • Dash, P., Gottsche, F.M., Olesen, F.S. and Fischer, H. (2002) Land surface temperature and emissivity estimation from passive sensor data: theory and pratice - current trends. Int. J. Remote Sens., 23(13), 2563-2594.
    • (2002) Int. J. Remote Sens. , vol.23 , Issue.13 , pp. 2563-2594
    • Dash, P.1    Gottsche, F.M.2    Olesen, F.S.3    Fischer, H.4
  • 18
    • 0037382208 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning SVM hyperparameters
    • Duan, K., Keerthi, S.S. and Poo, A.N. (2003) Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing, 51, 41-59.
    • (2003) Neurocomputing , vol.51 , pp. 41-59
    • Duan, K.1    Keerthi, S.S.2    Poo, A.N.3
  • 19
    • 33846939265 scopus 로고    scopus 로고
    • Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer
    • Durbha, S.S., King, R.L. and Younan, N.H. (2007) Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. Remote Sens. Environ., 107(1-2), 348-361.
    • (2007) Remote Sens. Environ. , vol.107 , Issue.1-2 , pp. 348-361
    • Durbha, S.S.1    King, R.L.2    Younan, N.H.3
  • 20
    • 84889453695 scopus 로고    scopus 로고
    • NOAA/NASA AVHRR oceans pathfinder sea surface temperature data set user's reference manual
    • Technical report, NOAA/NASA. Online
    • Evans, R. and Podestá, G. (1998) NOAA/NASA AVHRR oceans pathfinder sea surface temperature data set user's reference manual. Technical report, NOAA/NASA. Online: http://www.rsmas.miami.edu/groups/rrsl/pathfinder/.
    • (1998)
    • Evans, R.1    Podestá, G.2
  • 21
    • 0036161010 scopus 로고    scopus 로고
    • A probabilistic framework for SVM regression and error bar estimation
    • Gao, J.B., Gunn, S.R. and Harris, C.J. (2002) A probabilistic framework for SVM regression and error bar estimation. Machine Learning, 46, 71-89.
    • (2002) Machine Learning , vol.46 , pp. 71-89
    • Gao, J.B.1    Gunn, S.R.2    Harris, C.J.3
  • 22
    • 0037239497 scopus 로고    scopus 로고
    • Mean field method for the support vector machine regression
    • Gao, J.B., Gunn, S.R. and Harris, C.J. (2003a) Mean field method for the support vector machine regression. Neurocomp., 50, 391-405.
    • (2003) Neurocomp. , vol.50 , pp. 391-405
    • Gao, J.B.1    Gunn, S.R.2    Harris, C.J.3
  • 23
    • 0242383459 scopus 로고    scopus 로고
    • SVM regression through variational methods and its sequential implementation
    • Gao, J.B., Gunn, S.R. and Harris, C.J. (2003b) SVM regression through variational methods and its sequential implementation. Neurocomp., 55, 151-167.
    • (2003) Neurocomp. , vol.55 , pp. 151-167
    • Gao, J.B.1    Gunn, S.R.2    Harris, C.J.3
  • 25
    • 34548219923 scopus 로고    scopus 로고
    • A MODIS sea surface temperature composite for regional applications
    • Haines, S.L., Jedlovec, G.J. and Lazarus, S.M. (2007) A MODIS sea surface temperature composite for regional applications. IEEE Trans. Geosci. Remote Sensing, 45(9), 2919-2927.
    • (2007) IEEE Trans. Geosci. Remote Sensing , vol.45 , Issue.9 , pp. 2919-2927
    • Haines, S.L.1    Jedlovec, G.J.2    Lazarus, S.M.3
  • 26
    • 33846566853 scopus 로고    scopus 로고
    • Feasibility of retrieving land-surface temperature from ASTER TIR bands using two-channel algorithms: A case study of agricultural areas
    • Jiménez-Muñoz, J.C. and Sobrino, J.A. (2007) Feasibility of retrieving land-surface temperature from ASTER TIR bands using two-channel algorithms: A case study of agricultural areas. IEEE Geosci. Remote Sensing Letters, 4(1), 60-64.
    • (2007) IEEE Geosci. Remote Sensing Letters , vol.4 , Issue.1 , pp. 60-64
    • Jiménez-Muñoz, J.C.1    Sobrino, J.A.2
  • 27
    • 0003307180 scopus 로고    scopus 로고
    • Estimating the generalization performance of a SVM efficiently
    • Proc. of the International Conference on Machine Learning
    • Joachims, T. (2000) Estimating the generalization performance of a SVM efficiently. Proc. of the International Conference on Machine Learning.
    • (2000)
    • Joachims, T.1
  • 28
    • 0037844881 scopus 로고    scopus 로고
    • Linear dependency between ε and the input noise in ε-support vector regression
    • Kwok, J.T. and Tsang, I.T. (2003) Linear dependency between ε and the input noise in ε-support vector regression. IEEE Trans. Neural Networks, 14(3), 544-553.
    • (2003) IEEE Trans. Neural Networks , vol.14 , Issue.3 , pp. 544-553
    • Kwok, J.T.1    Tsang, I.T.2
  • 29
    • 13644277778 scopus 로고    scopus 로고
    • Bayesian support vector regression
    • Proc. of AISTATS-2001, Key West, Florida, USA
    • Law, M.H. and Kwok, J.T. (2001) Bayesian support vector regression. Proc. of AISTATS-2001, Key West, Florida, USA, pp. 239-244.
    • (2001) , pp. 239-244
    • Law, M.H.1    Kwok, J.T.2
  • 30
    • 0035044230 scopus 로고    scopus 로고
    • Deriving the operational nonlinear multichannel sea surface temperature algorithm coefficients for NOAA-15 AVHRR/3
    • Li, X., Pichel, W., Maturi, E., Clemente-Colon, P. and Sapper, J. (2001) Deriving the operational nonlinear multichannel sea surface temperature algorithm coefficients for NOAA-15 AVHRR/3. Int. J. Remote Sensing, 22, 699-704.
    • (2001) Int. J. Remote Sensing , vol.22 , pp. 699-704
    • Li, X.1    Pichel, W.2    Maturi, E.3    Clemente-Colon, P.4    Sapper, J.5
  • 31
    • 17444378757 scopus 로고    scopus 로고
    • Simple probabilistic predictions for support vector regression
    • Technical report, National Taiwan University. Online
    • Lin, C.J. and Weng, R.C. (2004) Simple probabilistic predictions for support vector regression. Technical report, National Taiwan University. Online: http://www.csie.ntu.edu.tw/cjlin/papers/svrprob.pdf.
    • (2004)
    • Lin, C.J.1    Weng, R.C.2
  • 32
    • 37249052822 scopus 로고    scopus 로고
    • A neural network technique for separating land surface emissivity and temperature from ASTER imagery
    • Mao, K., Shi, J., Tang, H., Li, Z.L.,Wang, X. and Chen, K.S. (2008) A neural network technique for separating land surface emissivity and temperature from ASTER imagery. IEEE Trans. Geosci. Remote Sensing, 46(1), 200-208.
    • (2008) IEEE Trans. Geosci. Remote Sensing , vol.46 , Issue.1 , pp. 200-208
    • Mao, K.1    Shi, J.2    Tang, H.3    Li, Z.L.4    Wang, X.5    Chen, K.S.6
  • 33
    • 9944239173 scopus 로고    scopus 로고
    • Retrieval of sea surface temperature from space, based on modelling of infrared radiative transfer: Capabilities and limitations
    • Merchant, C.J. and Borgne, P.L. (2004) Retrieval of sea surface temperature from space, based on modelling of infrared radiative transfer: Capabilities and limitations. J. Atmos. Ocean. Tech., 21, 1734-1746.
    • (2004) J. Atmos. Ocean. Tech. , vol.21 , pp. 1734-1746
    • Merchant, C.J.1    Borgne, P.L.2
  • 34
    • 42449161919 scopus 로고    scopus 로고
    • Automatic land and sea surface temperature estimation from remote sensing data
    • Proc. of SPIE-ISPRS-2007, Florence, Italy, 17-20 September 2007
    • Moser, G. and Serpico, S.B. (2007) Automatic land and sea surface temperature estimation from remote sensing data. Proc. of SPIE-ISPRS-2007, Florence, Italy, 17-20 September 2007.
    • (2007)
    • Moser, G.1    Serpico, S.B.2
  • 35
    • 67649766438 scopus 로고    scopus 로고
    • Modelling the error statistics in support vector regression of surface temperature from infrared data
    • Proc. of IGARSS-2008, Boston, USA, 6-11 July (2008) (in print)
    • Moser, G. and Serpico, S.B. (2008) Modelling the error statistics in support vector regression of surface temperature from infrared data. Proc. of IGARSS-2008, Boston, USA, 6-11 July (2008) (in print).
    • (2008)
    • Moser, G.1    Serpico, S.B.2
  • 36
    • 61349168387 scopus 로고    scopus 로고
    • Automatic land and sea surface temperature estimation from remote sensing data
    • IEEE Trans. Geosci. Remote Sensing (in press)
    • Moser, G. and Serpico, S.B. (2009) Automatic land and sea surface temperature estimation from remote sensing data. IEEE Trans. Geosci. Remote Sensing (in press).
    • (2009)
    • Moser, G.1    Serpico, S.B.2
  • 37
    • 0003663467 scopus 로고    scopus 로고
    • Probability, random variables, and stochastic processes
    • McGraw-Hill
    • Papoulis, A. and Pillai, S.U. (2002) Probability, random variables, and stochastic processes. McGraw-Hill.
    • (2002)
    • Papoulis, A.1    Pillai, S.U.2
  • 38
    • 33646403448 scopus 로고    scopus 로고
    • Improving two-temperature method retrievals based on a nonlinear optimization approach
    • Peres, L.F. and DaCamara, C.C. (2004a) Improving two-temperature method retrievals based on a nonlinear optimization approach. IEEE Geosci. Remote Sensing Letters, 2(3), 232-236.
    • (2004) IEEE Geosci. Remote Sensing Letters , vol.2 , Issue.3 , pp. 232-236
    • Peres, L.F.1    DaCamara, C.C.2
  • 39
    • 3342885386 scopus 로고    scopus 로고
    • Inverse problems theory and application: analysis of the two-temperature method for land-surface temperature and emissivity estimation
    • Peres, L.F. and DaCamara, C.C. (2004b) Inverse problems theory and application: analysis of the two-temperature method for land-surface temperature and emissivity estimation. IEEE Geosci. Remote Sensing Letters, 1(3), 206-210.
    • (2004) IEEE Geosci. Remote Sensing Letters , vol.1 , Issue.3 , pp. 206-210
    • Peres, L.F.1    DaCamara, C.C.2
  • 40
    • 24944475994 scopus 로고    scopus 로고
    • Emissivity maps to retrieve land-surface temperature from MSG/SEVIRI
    • Peres, L.F. and DaCamara, C.C. (2005) Emissivity maps to retrieve land-surface temperature from MSG/SEVIRI. IEEE Trans. Geosci. Remote Sensing, 43(8), 1834-1844.
    • (2005) IEEE Trans. Geosci. Remote Sensing , vol.43 , Issue.8 , pp. 1834-1844
    • Peres, L.F.1    DaCamara, C.C.2
  • 41
    • 4744339320 scopus 로고    scopus 로고
    • Directional effects in a daily AVHRR land surface temperature dataset over Africa
    • Pinheiro, C.T., Privette, J.L., Mahoney, R. and Tucker, C.J. (2004) Directional effects in a daily AVHRR land surface temperature dataset over Africa. IEEE Trans. Geosci. Remote Sensing, 42(9), 1941-1954.
    • (2004) IEEE Trans. Geosci. Remote Sensing , vol.42 , Issue.9 , pp. 1941-1954
    • Pinheiro, C.T.1    Privette, J.L.2    Mahoney, R.3    Tucker, C.J.4
  • 42
    • 0001008029 scopus 로고
    • An efficient method for finding the minimum of a function of several variables without calculating derivatives
    • Powell, M.J.D. (1964) An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comp. J., 7, 155-162.
    • (1964) Comp. J. , vol.7 , pp. 155-162
    • Powell, M.J.D.1
  • 43
    • 0345515985 scopus 로고    scopus 로고
    • Comparative study of algorithms for estimating land surface temperature from AVHRR data
    • Pozo Vázquez, D., Reyes, F.J.O. and Arboledas, L.A. (1997) Comparative study of algorithms for estimating land surface temperature from AVHRR data. Rem. Sens. Environ., 62(3), 215-222.
    • (1997) Rem. Sens. Environ. , vol.62 , Issue.3 , pp. 215-222
    • Pozo Vázquez, D.1    Reyes, F.J.O.2    Arboledas, L.A.3
  • 44
  • 45
    • 14644427760 scopus 로고    scopus 로고
    • The performance of the multi-spectral thermal imager (MTI) surface temperature retrieval algorithm at three sites
    • Rodger, A.P., Balick, L.K. and Clodius, W.B. (2005) The performance of the multi-spectral thermal imager (MTI) surface temperature retrieval algorithm at three sites. IEEE Trans. Geosci. Remote Sensing, 43(3), 658-665.
    • (2005) IEEE Trans. Geosci. Remote Sensing , vol.43 , Issue.3 , pp. 658-665
    • Rodger, A.P.1    Balick, L.K.2    Clodius, W.B.3
  • 47
    • 1142269676 scopus 로고    scopus 로고
    • Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax site
    • Sobrino, J.A., Jiménez-Muñoz, J.C., El-Kharraz-Gomez, M., Romaguera, M. and Soria, G. (2004) Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax site. Int. J. Remote Sens., 25(1), 215-230.
    • (2004) Int. J. Remote Sens. , vol.25 , Issue.1 , pp. 215-230
    • Sobrino, J.A.1    Jiménez-Muñoz, J.C.2    El-Kharraz-Gomez, M.3    Romaguera, M.4    Soria, G.5
  • 48
    • 2442484046 scopus 로고    scopus 로고
    • Case study of soil moisture effect on land surface temperature retrieval
    • Sun, D. and Pinker, R.T. (2004) Case study of soil moisture effect on land surface temperature retrieval. IEEE Geosci. Remote Sensing Letters, 1(2), 127-130.
    • (2004) IEEE Geosci. Remote Sensing Letters , vol.1 , Issue.2 , pp. 127-130
    • Sun, D.1    Pinker, R.T.2
  • 49
    • 58149507998 scopus 로고    scopus 로고
    • A multivariate regression approach to adjust AATSR sea surface temperature to in situ measurements
    • Tandeo, P., Autret, E., Piollé, J.-F., Tournadre, J. and Ailliot, P. (2009) A multivariate regression approach to adjust AATSR sea surface temperature to in situ measurements. IEEE Geosci. Remote Sensing Letters, 6(1), 8-12.
    • (2009) IEEE Geosci. Remote Sensing Letters , vol.6 , Issue.1 , pp. 8-12
    • Tandeo, P.1    Autret, E.2    Piollé, J.-F.3    Tournadre, J.4    Ailliot, P.5
  • 50
    • 0003890242 scopus 로고    scopus 로고
    • Scattering of Electromagnetic Waves
    • Theories and applications, Wiley Interscience
    • Tsang, L., Kong, J.A. and Ding, K.H. (2001) Scattering of Electromagnetic Waves, Vol. 1 Theories and applications, Wiley Interscience.
    • (2001) , vol.1
    • Tsang, L.1    Kong, J.A.2    Ding, K.H.3
  • 52
    • 0038928834 scopus 로고    scopus 로고
    • Bounds on error expectation for support vector machine
    • In Advances in Large Margin Classifiers, A.J. Smola, P. Bartlett, B. Scholkopf (eds), Schuurmans MIT Press
    • Vapnik, V. and Chapelle, O. (1999) Bounds on error expectation for support vector machine. In Advances in Large Margin Classifiers, A.J. Smola, P. Bartlett, B. Scholkopf (eds), Schuurmans MIT Press.
    • (1999)
    • Vapnik, V.1    Chapelle, O.2
  • 53
    • 0003991806 scopus 로고    scopus 로고
    • Statistical Learning Theory
    • Wiley Interscience
    • Vapnik, V.N. (1998) Statistical Learning Theory. Wiley Interscience.
    • (1998)
    • Vapnik, V.N.1
  • 54
    • 0003267918 scopus 로고    scopus 로고
    • GACV for support vector machines
    • In Advances in Large Margin Classifiers A.J. Smola, B. Bartlett and B. Schölkopf (eds), Schuurmans MIT Press
    • Wahba, G., Lin, Y. and Zhang, H. (1999) GACV for support vector machines. In Advances in Large Margin Classifiers A.J. Smola, B. Bartlett and B. Schölkopf (eds), Schuurmans MIT Press.
    • (1999)
    • Wahba, G.1    Lin, Y.2    Zhang, H.3
  • 55
    • 17444400956 scopus 로고    scopus 로고
    • An incremental learning strategy for support vector regression
    • Wang, W. (2005) An incremental learning strategy for support vector regression. Neural Processing Letters, 21, 175-188.
    • (2005) Neural Processing Letters , vol.21 , pp. 175-188
    • Wang, W.1
  • 57
    • 37249078215 scopus 로고    scopus 로고
    • Evaluation of split-windowland surface temperature algorithms for generating climate data records
    • Yu,Y., Privette, J.L. and Pinheiro, A.C. (2008) Evaluation of split-windowland surface temperature algorithms for generating climate data records. IEEE Trans. Geosci. Remote Sensing, 46(1), 179-192.
    • (2008) IEEE Trans. Geosci. Remote Sensing , vol.46 , Issue.1 , pp. 179-192
    • Yu, Y.1    Privette, J.L.2    Pinheiro, A.C.3
  • 58
    • 33747775838 scopus 로고    scopus 로고
    • Assessing the performance of the ensemble Kalman filter for land surface data assimilation
    • Zhou, Y.H., McLaughlin, D. and Entekhabi, D. (2006) Assessing the performance of the ensemble Kalman filter for land surface data assimilation. Mon. Weather. Review, 134(8), 2128-2142.
    • (2006) Mon. Weather. Review , vol.134 , Issue.8 , pp. 2128-2142
    • Zhou, Y.H.1    McLaughlin, D.2    Entekhabi, D.3
  • 59
    • 84889301111 scopus 로고    scopus 로고
    • Advanced pattern recognition techniques for environmental information extraction from remotely sensed data
    • Ph.D. thesis, University of Genoa
    • Zortea, M. (2007) Advanced pattern recognition techniques for environmental information extraction from remotely sensed data. Ph.D. thesis, University of Genoa.
    • (2007)
    • Zortea, M.1
  • 60
    • 34948820560 scopus 로고    scopus 로고
    • Land surface temperature estimation from infrared satellite data using support vector machines Proc
    • of IGARSS-2006, Denver, USA, (31) July - (4) August 2006
    • Zortea, M., De Martino, M., Moser, G. and Serpico, S.B. (2006) Land surface temperature estimation from infrared satellite data using support vector machines Proc. of IGARSS-2006, Denver, USA, (31) July - (4) August 2006, pp. 2109-2112.
    • (2006) , pp. 2109-2112
    • Zortea, M.1    De Martino, M.2    Moser, G.3    Serpico, S.B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.