-
1
-
-
0034014671
-
The role of tubulointerstitial injury in chronic renal failure
-
Becker GJ, Hewitson TD. The role of tubulointerstitial injury in chronic renal failure. Curr Opin Nephrol Hypertens. 2000;9(2):133–138.
-
(2000)
Curr Opin Nephrol Hypertens
, vol.9
, Issue.2
, pp. 133-138
-
-
Becker, G.J.1
Hewitson, T.D.2
-
2
-
-
0032512094
-
Pathophysiology of progressive nephropathies
-
Remuzzi G, Bertani T. Pathophysiology of progressive nephropathies. N Engl J Med. 1998;339(20):1448–1456.
-
(1998)
N Engl J Med
, vol.339
, Issue.20
, pp. 1448-1456
-
-
Remuzzi, G.1
Bertani, T.2
-
3
-
-
84878231896
-
Cellular mechanisms of tissue fibrosis. 3. Novel mechanisms of kidney fibrosis
-
Campanholle G, Ligresti G, Gharib SA, Duffeld JS. Cellular mechanisms of tissue fibrosis. 3. Novel mechanisms of kidney fibrosis. Am J Physiol Cell Physiol. 2013;304(7):C591–C603.
-
(2013)
Am J Physiol Cell Physiol
, vol.304
, Issue.7
, pp. C591-C603
-
-
Campanholle, G.1
Ligresti, G.2
Gharib, S.A.3
Duffeld, J.S.4
-
4
-
-
0033638127
-
Molecular basis of renal fibrosis
-
Eddy AA. Molecular basis of renal fibrosis. Pediatr Nephrol. 2000; 15(3–4):290–301.
-
(2000)
Pediatr Nephrol
, vol.15
, Issue.3-4
, pp. 290-301
-
-
Eddy, A.A.1
-
5
-
-
79959702777
-
Chronic kidney disease growth factors in renal fibrosis
-
Boor P, Floege J. Chronic kidney disease growth factors in renal fibrosis. Clin Exp Pharmacol Physiol. 2011;38(7):441–450.
-
(2011)
Clin Exp Pharmacol Physiol
, vol.38
, Issue.7
, pp. 441-450
-
-
Boor, P.1
Floege, J.2
-
6
-
-
84856691720
-
Disruption of Smad4 impairs TGF-β/Smad3 and Smad7 transcriptional regulation during renal infammation and fibrosis in vivo and in vitro
-
Meng XM, Huang XR, Xiao J, et al. Disruption of Smad4 impairs TGF-β/Smad3 and Smad7 transcriptional regulation during renal infammation and fibrosis in vivo and in vitro. Kidney Int. 2012;81(3): 266–279.
-
(2012)
Kidney Int
, vol.81
, Issue.3
, pp. 266-279
-
-
Meng, X.M.1
Huang, X.R.2
Xiao, J.3
-
7
-
-
33847321490
-
Mechanisms of disease: Regulation of RANTES (CCL5) in renal disease
-
Krensky AM, Ahn YT. Mechanisms of disease: regulation of RANTES (CCL5) in renal disease. Nat Clin Pract Nephrol. 2007;3(3): 164–170.
-
(2007)
Nat Clin Pract Nephrol
, vol.3
, Issue.3
, pp. 164-170
-
-
Krensky, A.M.1
Ahn, Y.T.2
-
8
-
-
0035137324
-
Transcription factor-kappa B (NF-kappa B) and renal disease
-
Guijarro C, Egido J. Transcription factor-kappa B (NF-kappa B) and renal disease. Kidney Int. 2001;59(2):415–424.
-
(2001)
Kidney Int
, vol.59
, Issue.2
, pp. 415-424
-
-
Guijarro, C.1
Egido, J.2
-
9
-
-
34548813622
-
Leukocytes induce epithelial to mesenchymal transition after unilateral ureteral obstruction in neonatal mice
-
Lange-Sperandio B, Trautmann A, Eickelberg O, et al. Leukocytes induce epithelial to mesenchymal transition after unilateral ureteral obstruction in neonatal mice. Am J Pathol. 2007;171(3):861–871.
-
(2007)
Am J Pathol
, vol.171
, Issue.3
, pp. 861-871
-
-
Lange-Sperandio, B.1
Trautmann, A.2
Eickelberg, O.3
-
10
-
-
7344251771
-
Local macrophage and myofibroblast proliferation in progressive renal injury in the rat remnant kidney
-
Yang N, Wu LL, Nikolic-Paterson DJ, et al. Local macrophage and myofibroblast proliferation in progressive renal injury in the rat remnant kidney. Nephrol Dial Transplant. 1998;13(8):1967–1974.
-
(1998)
Nephrol Dial Transplant
, vol.13
, Issue.8
, pp. 1967-1974
-
-
Yang, N.1
Wu, L.L.2
Nikolic-Paterson, D.J.3
-
11
-
-
48649099815
-
The role of capillary density, macrophage infltration and interstitial scarring in the pathogenesis of human chronic kidney disease
-
Eardley KS, Kubal C, Zehnder D, et al. The role of capillary density, macrophage infltration and interstitial scarring in the pathogenesis of human chronic kidney disease. Kidney Int. 2008;74(4):495–504.
-
(2008)
Kidney Int
, vol.74
, Issue.4
, pp. 495-504
-
-
Eardley, K.S.1
Kubal, C.2
Zehnder, D.3
-
12
-
-
21244475215
-
Inhibition of macrophage nuclear factor-kappaB leads to a dominant anti-infammatory phenotype that attenuates glomerular infammation in vivo
-
Wilson HM, Chettibi S, Jobin C, Walbaum D, Rees AJ, Kluth DC. Inhibition of macrophage nuclear factor-kappaB leads to a dominant anti-infammatory phenotype that attenuates glomerular infammation in vivo. Am J Pathol. 2005;167(1):27–37.
-
(2005)
Am J Pathol
, vol.167
, Issue.1
, pp. 27-37
-
-
Wilson, H.M.1
Chettibi, S.2
Jobin, C.3
Walbaum, D.4
Rees, A.J.5
Kluth, D.C.6
-
13
-
-
1642396952
-
Activation of toll-like receptor-9 induces progression of renal disease in MRL-Fas(lpr) mice
-
Anders HJ, Vielhauer V, Eis V, et al. Activation of toll-like receptor-9 induces progression of renal disease in MRL-Fas(lpr) mice. FASEB J. 2004;18(3):534–536.
-
(2004)
FASEB J
, vol.18
, Issue.3
, pp. 534-536
-
-
Anders, H.J.1
Vielhauer, V.2
Eis, V.3
-
14
-
-
0142008720
-
Molecular biology: MicroRNA is here to stay
-
Benfey PN. Molecular biology: microRNA is here to stay. Nature. 2003;425(6955):244–245.
-
(2003)
Nature
, vol.425
, Issue.6955
, pp. 244-245
-
-
Benfey, P.N.1
-
15
-
-
84897527865
-
MiR-34c attenuates epithelial-
-
Morizane R, Fujii S, Monkawa T, et al. miR-34c attenuates epithelial-mesenchymal transition and kidney fibrosis with ureteral obstruction. Sci Rep. 2014;4:4578.
-
(2014)
Sci Rep
, vol.4
, pp. 4578
-
-
Morizane, R.1
Fujii, S.2
Monkawa, T.3
-
16
-
-
1642379154
-
The role of epithelial-to-mesenchymal transition in renal fibrosis
-
Zeisberg M, Kalluri R. The role of epithelial-to-mesenchymal transition in renal fibrosis. J Mol Med. 2004;82(3):175–181.
-
(2004)
J Mol Med
, vol.82
, Issue.3
, pp. 175-181
-
-
Zeisberg, M.1
Kalluri, R.2
-
17
-
-
80052316668
-
Smad3-mediated upregulation of miR-21 promotes renal fibrosis
-
Zhong X, Chung AC, Chen HY, Meng XM, Lan HY. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol. 2011;22(9):1668–1681.
-
(2011)
J am Soc Nephrol
, vol.22
, Issue.9
, pp. 1668-1681
-
-
Zhong, X.1
Chung, A.C.2
Chen, H.Y.3
Meng, X.M.4
Lan, H.Y.5
-
18
-
-
79960946532
-
TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29
-
Qin W, Chung AC, Huang XR, et al. TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J Am Soc Nephrol. 2011;22(8):1462–1474.
-
(2011)
J am Soc Nephrol
, vol.22
, Issue.8
, pp. 1462-1474
-
-
Qin, W.1
Chung, A.C.2
Huang, X.R.3
-
19
-
-
77955611511
-
MiR-192 mediates TGF-beta/ Smad3-driven renal fibrosis
-
Chung AC, Huang XR, Meng X, Lan HY. miR-192 mediates TGF-beta/ Smad3-driven renal fibrosis. J Am Soc Nephrol. 2010;21(8):1317–1325.
-
(2010)
J am Soc Nephrol
, vol.21
, Issue.8
, pp. 1317-1325
-
-
Chung, A.C.1
Huang, X.R.2
Meng, X.3
Lan, H.Y.4
-
20
-
-
84863115180
-
Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis
-
Wang B, Komers R, Carew R, et al. Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis. J Am Soc Nephrol. 2012;23(2):252–265.
-
(2012)
J am Soc Nephrol
, vol.23
, Issue.2
, pp. 252-265
-
-
Wang, B.1
Komers, R.2
Carew, R.3
-
21
-
-
78149459698
-
MiR-200b precursor can ameliorate
-
Oba S, Kumano S, Suzuki E, et al. miR-200b precursor can ameliorate renal tubulointerstitial fibrosis. PLoS One. 2010;5(10):e13614.
-
(2010)
Plos One
, vol.5
, Issue.10
-
-
Oba, S.1
Kumano, S.2
Suzuki, E.3
-
22
-
-
84865963313
-
MicroRNA-324-3p promotes renal fibrosis and is a target of ACE inhibition
-
Macconi D, Tomasoni S, Romagnani P, et al. MicroRNA-324-3p promotes renal fibrosis and is a target of ACE inhibition. J Am Soc Nephrol. 2012;23(9):1496–1505.
-
(2012)
J am Soc Nephrol
, vol.23
, Issue.9
, pp. 1496-1505
-
-
Macconi, D.1
Tomasoni, S.2
Romagnani, P.3
-
23
-
-
84888638018
-
The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-beta/Smad3-Azin1 pathway
-
Li R, Chung AC, Dong Y, Yang W, Zhong X, Lan HY. The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-beta/Smad3-Azin1 pathway. Kidney Int. 2013;84(6):1129–1144.
-
(2013)
Kidney Int
, vol.84
, Issue.6
, pp. 1129-1144
-
-
Li, R.1
Chung, A.C.2
Dong, Y.3
Yang, W.4
Zhong, X.5
Lan, H.Y.6
-
24
-
-
84857979740
-
InhibitingmicroRNA-192 ameliorates renal fibrosis in diabetic nephropathy
-
Putta S, Lanting L, Sun G, Lawson G, Kato M, Natarajan R. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol. 2012;23(3):458–469.
-
(2012)
J am Soc Nephrol
, vol.23
, Issue.3
, pp. 458-469
-
-
Putta, S.1
Lanting, L.2
Sun, G.3
Lawson, G.4
Kato, M.5
Natarajan, R.6
-
25
-
-
84905391224
-
Chikungunya virus exploits miR-
-
Selvamani SP, Mishra R, Singh SK. Chikungunya virus exploits miR-146a to regulate NF-kappaB pathway in human synovial fibroblasts. PLoS One. 2014;9(8):e103624.
-
(2014)
Plos One
, vol.9
, Issue.8
-
-
Selvamani, S.P.1
Mishra, R.2
Singh, S.K.3
-
26
-
-
79960434259
-
MicroRNA-146a downregulates NFkappaB activity via targeting TRAF6 and functions as a tumor suppressor having strong prognostic implications in NK/T cell lymphoma
-
Paik JH, Jang JY, Jeon YK, et al. MicroRNA-146a downregulates NFkappaB activity via targeting TRAF6 and functions as a tumor suppressor having strong prognostic implications in NK/T cell lymphoma. Clin Cancer Res. 2011;17(14):4761–4771.
-
(2011)
Clin Cancer Res
, vol.17
, Issue.14
, pp. 4761-4771
-
-
Paik, J.H.1
Jang, J.Y.2
Jeon, Y.K.3
-
27
-
-
84908366121
-
MicroRNA-146a and microRNA-146b expression and anti-infammatory function in human airway smooth muscle
-
Comer BS, Camoretti-Mercado B, Kogut PC, Halayko AJ, Solway J, Gerthoffer WT. MicroRNA-146a and microRNA-146b expression and anti-infammatory function in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2014;307(9):L727–L734.
-
(2014)
Am J Physiol Lung Cell Mol Physiol
, vol.307
, Issue.9
, pp. L727-L734
-
-
Comer, B.S.1
Camoretti-Mercado, B.2
Kogut, P.C.3
Halayko, A.J.4
Solway, J.5
Gerthoffer, W.T.6
-
28
-
-
79952575527
-
MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and infammatory response via targeting toll-like receptor 4
-
Yang K, He YS, Wang XQ, et al. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and infammatory response via targeting toll-like receptor 4. FEBS Lett. 2011;585(6):854–860.
-
(2011)
FEBS Lett
, vol.585
, Issue.6
, pp. 854-860
-
-
Yang, K.1
He, Y.S.2
Wang, X.Q.3
-
29
-
-
84896838762
-
Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon
-
Ho BC, Yu IS, Lu LF, et al. Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon. Nat Commun. 2014;5:3344.
-
(2014)
Nat Commun
, vol.5
, pp. 3344
-
-
Ho, B.C.1
Yu, I.S.2
Lu, L.F.3
-
30
-
-
84929433415
-
The Downregulation of MicroRNA-146a Modulates TGF-β Signaling Pathways Activity in Glioblastoma
-
Epub October 19
-
Lv S, Sun B, Dai C, et al. The Downregulation of MicroRNA-146a Modulates TGF-β Signaling Pathways Activity in Glioblastoma. Mol Neurobiol. 2014. Epub October 19.
-
(2014)
Mol
-
-
Lv, S.1
Sun, B.2
Dai, C.3
-
31
-
-
84907918081
-
Involvement of infammation-related miR-155 and miR-146a in diabetic nephropathy: Implications for glomerular endothelial injury
-
Huang Y, Liu Y, Li L, et al. Involvement of infammation-related miR-155 and miR-146a in diabetic nephropathy: implications for glomerular endothelial injury. BMC Nephrol. 2014;15:142.
-
(2014)
BMC Nephrol
, vol.15
, pp. 142
-
-
Huang, Y.1
Liu, Y.2
Li, L.3
-
32
-
-
84927168676
-
Decreases in Casz1 mRNA by an siRNA Complex Do not Alter Blood Pressure in Mice
-
Ji SM, Shin YB, Park SY, Lee HJ, Oh B. Decreases in Casz1 mRNA by an siRNA Complex Do not Alter Blood Pressure in Mice. Genomics Inform. 2012;10(1):40–43.
-
(2012)
Genomics Inform
, vol.10
, Issue.1
, pp. 40-43
-
-
Ji, S.M.1
Shin, Y.B.2
Park, S.Y.3
Lee, H.J.4
Oh, B.5
-
33
-
-
26944452881
-
Suppressors of cytokine signaling regulate angiotensin II-activated Janus kinase-signal transducers and activators of transcription pathway in renal cells
-
Hernandez-Vargas P, Lopez-Franco O, Sanjuan G, et al. Suppressors of cytokine signaling regulate angiotensin II-activated Janus kinase-signal transducers and activators of transcription pathway in renal cells. J Am Soc Nephrol. 2005;16(6):1673–1683.
-
(2005)
J am Soc Nephrol
, vol.16
, Issue.6
, pp. 1673-1683
-
-
Hernandez-Vargas, P.1
Lopez-Franco, O.2
Sanjuan, G.3
-
34
-
-
67349203391
-
Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy
-
Chevalier RL, Forbes MS, Thornhill BA. Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int. 2009;75(11):1145–1152.
-
(2009)
Kidney Int
, vol.75
, Issue.11
, pp. 1145-1152
-
-
Chevalier, R.L.1
Forbes, M.S.2
Thornhill, B.A.3
-
35
-
-
84923273195
-
SiRNAs targeted to Smad4 prevent renal fibrosis in vivo
-
Morishita Y, Yoshizawa H, Watanabe M, et al. siRNAs targeted to Smad4 prevent renal fibrosis in vivo. Sci Rep. 2014;4:6424.
-
(2014)
Sci Rep
, vol.4
, pp. 6424
-
-
Morishita, Y.1
Yoshizawa, H.2
Watanabe, M.3
-
36
-
-
20444377785
-
Polyethylenimine-based non-viral gene delivery systems
-
Lungwitz U, Breunig M, Blunk T, Gopferich A. Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm. 2005;60(2):247–266.
-
(2005)
Eur J Pharm Biopharm
, vol.60
, Issue.2
, pp. 247-266
-
-
Lungwitz, U.1
Breunig, M.2
Blunk, T.3
Gopferich, A.4
-
37
-
-
34548588786
-
A unique and highly efficient non-viral DNA/siRNA delivery system based on PEI-bisepoxide nanoparticles
-
Swami A, Kurupati RK, Pathak A, Singh Y, Kumar P, Gupta KC. A unique and highly efficient non-viral DNA/siRNA delivery system based on PEI-bisepoxide nanoparticles. Biochem Biophys Res Commun. 2007;362(4):835–841.
-
(2007)
Biochem Biophys Res Commun
, vol.362
, Issue.4
, pp. 835-841
-
-
Swami, A.1
Kurupati, R.K.2
Pathak, A.3
Singh, Y.4
Kumar, P.5
Gupta, K.C.6
-
38
-
-
0030903307
-
RANTES and monocyte chemoattractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis
-
Lloyd CM, Minto AW, Dorf ME, et al. RANTES and monocyte chemoattractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis. J Exp Med. 1997;185(7):1371–1380.
-
(1997)
J Exp Med
, vol.185
, Issue.7
, pp. 1371-1380
-
-
Lloyd, C.M.1
Minto, A.W.2
Dorf, M.E.3
-
39
-
-
73949096744
-
Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis
-
Humphreys BD, Lin SL, Kobayashi A, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol. 2010;176(1):85–97.
-
(2010)
Am J Pathol
, vol.176
, Issue.1
, pp. 85-97
-
-
Humphreys, B.D.1
Lin, S.L.2
Kobayashi, A.3
-
40
-
-
0346724511
-
Epithelial-mesenchymal transition and its implications for fibrosis
-
Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003;112(12):1776–1784.
-
(2003)
J Clin Invest
, vol.112
, Issue.12
, pp. 1776-1784
-
-
Kalluri, R.1
Neilson, E.G.2
-
41
-
-
73549092294
-
Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice
-
Li J, Qu X, Bertram JF. Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am J Pathol. 2009;175(4): 1380–1388.
-
(2009)
Am J Pathol
, vol.175
, Issue.4
, pp. 1380-1388
-
-
Li, J.1
Qu, X.2
Bertram, J.F.3
-
42
-
-
33845973760
-
Bone marrow-derived myofibroblasts contribute to the renal interstitial myofibroblast population and produce procollagen I after ischemia/reperfusion in rats
-
Broekema M, Harmsen MC, van Luyn MJ, et al. Bone marrow-derived myofibroblasts contribute to the renal interstitial myofibroblast population and produce procollagen I after ischemia/reperfusion in rats. J Am Soc Nephrol. 2007;18(1):165–175.
-
(2007)
J am Soc Nephrol
, vol.18
, Issue.1
, pp. 165-175
-
-
Broekema, M.1
Harmsen, M.C.2
Van Luyn, M.J.3
-
43
-
-
84882289111
-
Origin and function of myo-fibroblasts in kidney fibrosis
-
LeBleu VS, Taduri G, O’Connell J, et al. Origin and function of myo-fibroblasts in kidney fibrosis. Nat Med. 2013;19(8):1047–1053.
-
(2013)
Nat Med
, vol.19
, Issue.8
, pp. 1047-1053
-
-
Lebleu, V.S.1
Taduri, G.2
O’Connell, J.3
|