메뉴 건너뛰기




Volumn 59, Issue , 2015, Pages 11-17

On classification with bags, groups and sets

Author keywords

Group based classification; Label dependencies; Multiple instance learning; Set classification; Weakly labeled data

Indexed keywords

SOFTWARE ENGINEERING;

EID: 84929000252     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2015.03.008     Document Type: Article
Times cited : (33)

References (63)
  • 1
    • 84879815802 scopus 로고    scopus 로고
    • Multiple instance classification: Review, taxonomy and comparative study
    • J. Amores Multiple instance classification: review, taxonomy and comparative study Artif. Intell. 201 2013 81 105
    • (2013) Artif. Intell. , vol.201 , pp. 81-105
    • Amores, J.1
  • 2
    • 85141266799 scopus 로고    scopus 로고
    • Support vector machines for multiple-instance learning
    • S. Andrews, I. Tsochantaridis, T. Hofmann Support vector machines for multiple-instance learning NIPS vol. 15 2002 561 568
    • (2002) NIPS , vol.15 VOL. , pp. 561-568
    • Andrews, S.1    Tsochantaridis, I.2    Hofmann, T.3
  • 3
    • 70450188146 scopus 로고    scopus 로고
    • Visual tracking with online multiple instance learning
    • IEEE
    • B. Babenko, M.-H. Yang, S. Belongie Visual tracking with online multiple instance learning CVPR 2009 IEEE 983 990
    • (2009) CVPR , pp. 983-990
    • Babenko, B.1    Yang, M.-H.2    Belongie, S.3
  • 8
    • 33947180489 scopus 로고    scopus 로고
    • MILES: Multiple-instance learning via embedded instance selection
    • Y. Chen, J. Bi, J.Z. Wang MILES: multiple-instance learning via embedded instance selection TPAMI 28 12 2006 1931 1947
    • (2006) TPAMI , vol.28 , Issue.12 , pp. 1931-1947
    • Chen, Y.1    Bi, J.2    Wang, J.Z.3
  • 9
    • 84919897477 scopus 로고    scopus 로고
    • Classification of COPD with multiple instance learning
    • V. Cheplygina, L. Sørensen et al. Classification of COPD with multiple instance learning ICPR 2014
    • (2014) ICPR
    • Cheplygina, V.1    Sørensen, L.2
  • 10
    • 84908024288 scopus 로고    scopus 로고
    • Multiple instance learning with bag dissimilarities
    • V. Cheplygina, D.M.J. Tax, M. Loog Multiple instance learning with bag dissimilarities Pattern Recognit. 48 1 2015 264 275
    • (2015) Pattern Recognit. , vol.48 , Issue.1 , pp. 264-275
    • Cheplygina, V.1    Tax, D.M.J.2    Loog, M.3
  • 11
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • T. Dietterich et al. Solving the multiple instance problem with axis-parallel rectangles Artif. Intell. 89 1-2 1997 31 71
    • (1997) Artif. Intell. , vol.89 , Issue.12 , pp. 31-71
    • Dietterich, T.1
  • 12
    • 58149180961 scopus 로고    scopus 로고
    • Learning classifiers from only positive and unlabeled data
    • ACM
    • C. Elkan, K. Noto Learning classifiers from only positive and unlabeled data KDD 2008 ACM 213 220
    • (2008) KDD , pp. 213-220
    • Elkan, C.1    Noto, K.2
  • 13
    • 77952349835 scopus 로고    scopus 로고
    • A review of multi-instance learning assumptions
    • J. Foulds, E. Frank A review of multi-instance learning assumptions Knowl. Eng. Rev. 25 1 2010 1
    • (2010) Knowl. Eng. Rev. , vol.25 , Issue.1 , pp. 1
    • Foulds, J.1    Frank, E.2
  • 16
    • 84862292319 scopus 로고    scopus 로고
    • Deterministic annealing for multiple-instance learning
    • P.V. Gehler, O. Chapelle Deterministic annealing for multiple-instance learning AISTATS 2007 123 130
    • (2007) AISTATS , pp. 123-130
    • Gehler, P.V.1    Chapelle, O.2
  • 17
    • 78149341381 scopus 로고    scopus 로고
    • Multiple instance metric learning from automatically labeled bags of faces
    • Springer
    • M. Guillaumin, J. Verbeek, C. Schmid Multiple instance metric learning from automatically labeled bags of faces ECCV 2010 Springer 634 647
    • (2010) ECCV , pp. 634-647
    • Guillaumin, M.1    Verbeek, J.2    Schmid, C.3
  • 18
    • 77950423796 scopus 로고    scopus 로고
    • A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3d: Application to ligand prediction
    • B. Hoffmann et al. A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3d: application to ligand prediction BMC Bioinform. 11 1 2010 99
    • (2010) BMC Bioinform. , vol.11 , Issue.1 , pp. 99
    • Hoffmann, B.1
  • 19
    • 0033640646 scopus 로고    scopus 로고
    • Statistical pattern recognition: A review
    • A.K. Jain, R.P.W. Duin, J. Mao Statistical pattern recognition: a review TPAMI 22 1 2000 4 37
    • (2000) TPAMI , vol.22 , Issue.1 , pp. 4-37
    • Jain, A.K.1    Duin, R.P.W.2    Mao, J.3
  • 20
    • 0345414118 scopus 로고    scopus 로고
    • Images as bags of pixels
    • T. Jebara Images as bags of pixels ICCV 2003 265 272
    • (2003) ICCV , pp. 265-272
    • Jebara, T.1
  • 23
    • 84926394401 scopus 로고    scopus 로고
    • Computer-aided diagnosis from weak supervision: A benchmarking study
    • M. Kandemir, F.A. Hamprecht Computer-aided diagnosis from weak supervision: a benchmarking study Comput. Med. Imaging Graph. 42 2015 44 50
    • (2015) Comput. Med. Imaging Graph. , vol.42 , pp. 44-50
    • Kandemir, M.1    Hamprecht, F.A.2
  • 24
    • 34247568488 scopus 로고    scopus 로고
    • Discriminative learning and recognition of image set classes using canonical correlations
    • T.-K. Kim et al. Discriminative learning and recognition of image set classes using canonical correlations TPAMI 29 6 2007 1005 1018
    • (2007) TPAMI , vol.29 , Issue.6 , pp. 1005-1018
    • Kim, T.-K.1
  • 26
    • 1942452419 scopus 로고    scopus 로고
    • A kernel between sets of vectors
    • R. Kondor, T. Jebara A kernel between sets of vectors ICML vol. 20 2003 361
    • (2003) ICML , vol.20 VOL. , pp. 361
    • Kondor, R.1    Jebara, T.2
  • 27
  • 29
    • 79952314979 scopus 로고    scopus 로고
    • Full-class set classification using the hungarian algorithm
    • L.I. Kuncheva Full-class set classification using the hungarian algorithm IJMLC 1 1 2010 53 61
    • (2010) IJMLC , vol.1 , Issue.1 , pp. 53-61
    • Kuncheva, L.I.1
  • 30
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty et al. Conditional random fields: probabilistic models for segmenting and labeling sequence data ICML 2001 282 289
    • (2001) ICML , pp. 282-289
    • Lafferty, J.1
  • 32
    • 84892918531 scopus 로고    scopus 로고
    • The link between multiple-instance learning and learning from only positive and unlabelled examples
    • Y. Li, D.M.J. Tax, R.P.W. Duin, M. Loog The link between multiple-instance learning and learning from only positive and unlabelled examples Multiple Classifier Systems 2013 157 166
    • (2013) Multiple Classifier Systems , pp. 157-166
    • Li, Y.1    Tax, D.M.J.2    Duin, R.P.W.3    Loog, M.4
  • 33
    • 10044253348 scopus 로고    scopus 로고
    • Static posterior probability fusion for signal detection: Applications in the detection of interstitial diseases in chest radiographs
    • IEEE
    • M. Loog, B. Van Ginneken Static posterior probability fusion for signal detection: applications in the detection of interstitial diseases in chest radiographs ICPR vol. 1 2004 IEEE 644 647
    • (2004) ICPR , vol.1 VOL. , pp. 644-647
    • Loog, M.1    Van Ginneken, B.2
  • 35
    • 84898935332 scopus 로고    scopus 로고
    • A framework for multiple-instance learning
    • Morgan Kaufmann Publishers
    • O. Maron, T. Lozano-Pérez A framework for multiple-instance learning NIPS 1998 Morgan Kaufmann Publishers 570 576
    • (1998) NIPS , pp. 570-576
    • Maron, O.1    Lozano-Pérez, T.2
  • 36
    • 0002288190 scopus 로고    scopus 로고
    • Multiple-instance learning for natural scene classification
    • O. Maron, A.L. Ratan Multiple-instance learning for natural scene classification ICML vol. 15 1998 341 349
    • (1998) ICML , vol.15 VOL. , pp. 341-349
    • Maron, O.1    Ratan, A.L.2
  • 38
    • 84877782369 scopus 로고    scopus 로고
    • Learning from distributions via support measure machines
    • K. Muandet, K. Fukumizu, F. Dinuzzo, B. Schölkopf Learning from distributions via support measure machines NIPS 2012 10 18
    • (2012) NIPS , pp. 10-18
    • Muandet, K.1    Fukumizu, K.2    Dinuzzo, F.3    Schölkopf, B.4
  • 39
    • 84857420364 scopus 로고    scopus 로고
    • Multi-instance methods for partially supervised image segmentation
    • Springer
    • A. Müller, S. Behnke Multi-instance methods for partially supervised image segmentation Partially Supervised Learning 2012 Springer 110 119
    • (2012) Partially Supervised Learning , pp. 110-119
    • Müller, A.1    Behnke, S.2
  • 40
    • 21844431631 scopus 로고    scopus 로고
    • Machine learning methods for predicting failures in hard drives: A multiple-instance application
    • J.F. Murray et al. Machine learning methods for predicting failures in hard drives: a multiple-instance application JMLR 6 1 2006 783
    • (2006) JMLR , vol.6 , Issue.1 , pp. 783
    • Murray, J.F.1
  • 41
    • 49749111096 scopus 로고    scopus 로고
    • Supervised learning by training on aggregate outputs
    • IEEE
    • D. Musicant, J. Christensen, J. Olson Supervised learning by training on aggregate outputs ICDM 2007 IEEE 252 261
    • (2007) ICDM , pp. 252-261
    • Musicant, D.1    Christensen, J.2    Olson, J.3
  • 42
    • 62449290626 scopus 로고    scopus 로고
    • The set classification problem and solution methods
    • IEEE
    • X. Ning, G. Karypis The set classification problem and solution methods ICDM Workshops 2008 IEEE 720 729
    • (2008) ICDM Workshops , pp. 720-729
    • Ning, X.1    Karypis, G.2
  • 44
  • 45
    • 84928726721 scopus 로고    scopus 로고
    • Localized content based image retrieval
    • ACM
    • R. Rahmani et al. Localized content based image retrieval Multimedia Information Retrieval 2005 ACM 227 236
    • (2005) Multimedia Information Retrieval , pp. 227-236
    • Rahmani, R.1
  • 46
    • 33947301798 scopus 로고    scopus 로고
    • Learning statistical models for annotating proteins with function information using biomedical text
    • S. Ray, M. Craven Learning statistical models for annotating proteins with function information using biomedical text BMC Bioinform. 6 Suppl. 1 2005 S18
    • (2005) BMC Bioinform. , vol.6 , Issue.SUPPL. 1 , pp. S18
    • Ray, S.1    Craven, M.2
  • 47
    • 31844448950 scopus 로고    scopus 로고
    • Supervised versus multiple instance learning: An empirical comparison
    • S. Ray, M. Craven Supervised versus multiple instance learning: an empirical comparison ICML 2005 697 704
    • (2005) ICML , pp. 697-704
    • Ray, S.1    Craven, M.2
  • 48
    • 77953614977 scopus 로고    scopus 로고
    • Nearest neighbour group-based classification
    • N.A. Samsudin, A.P. Bradley Nearest neighbour group-based classification Pattern Recognit. 43 10 2010 3458 3467
    • (2010) Pattern Recognit. , vol.43 , Issue.10 , pp. 3458-3467
    • Samsudin, N.A.1    Bradley, A.P.2
  • 52
    • 77955986468 scopus 로고    scopus 로고
    • Towards weakly supervised semantic segmentation by means of multiple instance and multitask learning
    • IEEE
    • A. Vezhnevets, J.M. Buhmann Towards weakly supervised semantic segmentation by means of multiple instance and multitask learning CVPR 2010 IEEE 3249 3256
    • (2010) CVPR , pp. 3249-3256
    • Vezhnevets, A.1    Buhmann, J.M.2
  • 53
    • 51949096901 scopus 로고    scopus 로고
    • Keywords to visual categories: Multiple-instance learning for weakly supervised object categorization
    • IEEE
    • S. Vijayanarasimhan, K. Grauman Keywords to visual categories: multiple-instance learning for weakly supervised object categorization CVPR 2008 IEEE 1 8
    • (2008) CVPR , pp. 1-8
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 54
    • 33750304254 scopus 로고    scopus 로고
    • Batch classification with applications in computer aided diagnosis
    • Springer
    • V. Vural et al. Batch classification with applications in computer aided diagnosis ECML 2006 Springer 449 460
    • (2006) ECML , pp. 449-460
    • Vural, V.1
  • 55
    • 0141596676 scopus 로고    scopus 로고
    • Solving the multiple-instance problem: A lazy learning approach
    • J. Wang Solving the multiple-instance problem: a lazy learning approach ICML 2000 1119 1125
    • (2000) ICML , pp. 1119-1125
    • Wang, J.1
  • 56
    • 9444267142 scopus 로고    scopus 로고
    • A two-level learning method for generalized multi-instance problems
    • N. Weidmann, E. Frank, B. Pfahringer A two-level learning method for generalized multi-instance problems ECML 2003 468 479
    • (2003) ECML , pp. 468-479
    • Weidmann, N.1    Frank, E.2    Pfahringer, B.3
  • 57
    • 4644322072 scopus 로고    scopus 로고
    • Learning over sets using kernel principal angles
    • L. Wolf, A. Shashua Learning over sets using kernel principal angles JMLR 4 2003 913 931
    • (2003) JMLR , vol.4 , pp. 913-931
    • Wolf, L.1    Shashua, A.2
  • 58
    • 33645988196 scopus 로고    scopus 로고
    • From sample similarity to ensemble similarity: Probabilistic distance measures in reproducing kernel hilbert space
    • S.K. Zhou, R. Chellappa From sample similarity to ensemble similarity: probabilistic distance measures in reproducing kernel hilbert space TPAMI 28 6 2006 917 929
    • (2006) TPAMI , vol.28 , Issue.6 , pp. 917-929
    • Zhou, S.K.1    Chellappa, R.2
  • 59
    • 33745609124 scopus 로고    scopus 로고
    • Multi-Instance Learning: A Survey
    • Department of Computer Science and Technology, Nanjing University
    • Z.-H. Zhou Multi-Instance Learning: A Survey Technical Report 2004 Department of Computer Science and Technology, Nanjing University
    • (2004) Technical Report
    • Zhou, Z.-H.1
  • 60
    • 71149085943 scopus 로고    scopus 로고
    • Multi-instance learning by treating instances as non-IID samples
    • Z.H. Zhou, Y.Y. Sun, Y.F. Li Multi-instance learning by treating instances as non-IID samples ICML 2009 1249 1256
    • (2009) ICML , pp. 1249-1256
    • Zhou, Z.H.1    Sun, Y.Y.2    Li, Y.F.3
  • 61
    • 34547984757 scopus 로고    scopus 로고
    • On the relation between multi-instance learning and semi-supervised learning
    • Z.-H. Zhou, J.-M. Xu On the relation between multi-instance learning and semi-supervised learning ICML 2007 1167 1174
    • (2007) ICML , pp. 1167-1174
    • Zhou, Z.-H.1    Xu, J.-M.2
  • 63
    • 33745456231 scopus 로고    scopus 로고
    • Semi-Supervised Learning Literature Survey
    • Computer Sciences, University of Wisconsin-Madison
    • X. Zhu Semi-Supervised Learning Literature Survey Technical Report 1530 2005 Computer Sciences, University of Wisconsin-Madison
    • (2005) Technical Report 1530
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.