-
1
-
-
0030649484
-
Solving the multiple instance problem with axis-parallel rectangles
-
Dietterich, T., Lathrop, R., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence 89(1-2), 31-71 (1997)
-
(1997)
Artificial Intelligence
, vol.89
, Issue.1-2
, pp. 31-71
-
-
Dietterich, T.1
Lathrop, R.2
Lozano-Pérez, T.3
-
2
-
-
84898946229
-
Support vector machines for multiple-instance learning
-
Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: Adv. Neu. Inf. Proc. Sys., pp. 577-584 (2003)
-
(2003)
Adv. Neu. Inf. Proc. Sys.
, pp. 577-584
-
-
Andrews, S.1
Tsochantaridis, I.2
Hofmann, T.3
-
3
-
-
33947180489
-
MILES: Multiple-instance learning via embedded instance selection
-
Chen, Y., Bi, J., Wang, J.: MILES: Multiple-instance learning via embedded instance selection. IEEE Trans. PAMI 28(12), 1931-1947 (2006)
-
(2006)
IEEE Trans. PAMI
, vol.28
, Issue.12
, pp. 1931-1947
-
-
Chen, Y.1
Bi, J.2
Wang, J.3
-
4
-
-
71149085943
-
Multi-instance learning by treating instances as non-IID samples
-
Zhou, Z., Sun, Y., Li, Y.: Multi-instance learning by treating instances as non-IID samples. In: Proc. 26th ICML, pp. 1249-1256 (2009)
-
(2009)
Proc. 26th ICML
, pp. 1249-1256
-
-
Zhou, Z.1
Sun, Y.2
Li, Y.3
-
5
-
-
70450188146
-
Visual tracking with online multiple instance learning
-
Babenko, B., Yang, M., Belongie, S.: Visual tracking with online multiple instance learning. In: IEEE CVPR, pp. 983-990 (2009)
-
(2009)
IEEE CVPR
, pp. 983-990
-
-
Babenko, B.1
Yang, M.2
Belongie, S.3
-
6
-
-
84961317343
-
PAC learning from positive statistical queries
-
Richter, M.M., Smith, C.H., Wiehagen, R., Zeugmann, T. (eds.) ALT 1998. Springer, Heidelberg
-
Denis, F.: PAC learning from positive statistical queries. In: Richter, M.M., Smith, C.H., Wiehagen, R., Zeugmann, T. (eds.) ALT 1998. LNCS (LNAI), vol. 1501, pp. 112-126. Springer, Heidelberg (1998)
-
(1998)
LNCS (LNAI)
, vol.1501
, pp. 112-126
-
-
Denis, F.1
-
7
-
-
1942516926
-
Learning with positive and unlabeled examples using weighted logistic regression
-
Lee, W., Liu, B.: Learning with positive and unlabeled examples using weighted logistic regression. In: Proc. 20th ICML, pp. 448-455 (2003)
-
(2003)
Proc. 20th ICML
, pp. 448-455
-
-
Lee, W.1
Liu, B.2
-
8
-
-
78149306870
-
Building text classifiers using positive and unlabeled examples
-
Liu, B., Dai, Y., Li, X., Lee, W., Yu, P.: Building text classifiers using positive and unlabeled examples. In: Proc. Int'l Conf. Data Mining, pp. 179-188 (2003)
-
(2003)
Proc. Int'l Conf. Data Mining
, pp. 179-188
-
-
Liu, B.1
Dai, Y.2
Li, X.3
Lee, W.4
Yu, P.5
-
9
-
-
0742268826
-
PEBL: Web page classification without negative examples
-
Yu, H., Han, J., Chang, K.: PEBL: Web page classification without negative examples. IEEE Trans. Know. and Data Eng. 16(1), 70-81 (2004)
-
(2004)
IEEE Trans. Know. and Data Eng.
, vol.16
, Issue.1
, pp. 70-81
-
-
Yu, H.1
Han, J.2
Chang, K.3
-
10
-
-
72949090151
-
Learning with Positive and Unlabeled Examples Using Topic-Sensitive PLSA
-
Zhou, K., Xue, G., Yang, Q., Yu, Y.: Learning with Positive and Unlabeled Examples Using Topic-Sensitive PLSA. IEEE Trans. on Knowledge and Data Engineering 22(1), 46-58 (2010)
-
(2010)
IEEE Trans. on Knowledge and Data Engineering
, vol.22
, Issue.1
, pp. 46-58
-
-
Zhou, K.1
Xue, G.2
Yang, Q.3
Yu, Y.4
-
14
-
-
31844448950
-
Supervised versus multiple instance learning: An empirical comparison
-
Ray, S., Craven, M.: Supervised versus multiple instance learning: An empirical comparison. In: Proc. 22nd Int'l Conf. Mach. Learn., pp. 697-704 (2005)
-
(2005)
Proc. 22nd Int'l Conf. Mach. Learn.
, pp. 697-704
-
-
Ray, S.1
Craven, M.2
-
15
-
-
77952349835
-
A review of multi-instance learning assumptions
-
Foulds, J., Frank, E.: A review of multi-instance learning assumptions. The Knowledge Engineering Review 25(01), 1-25 (2010)
-
(2010)
The Knowledge Engineering Review
, vol.25
, Issue.1
, pp. 1-25
-
-
Foulds, J.1
Frank, E.2
-
16
-
-
84870251236
-
Multiple-instance learning as a classifier combining problem
-
Li, Y., Tax, D., Duin, R., Loog, M.: Multiple-instance learning as a classifier combining problem. Pattern Recognition 46(3), 865-874 (2013)
-
(2013)
Pattern Recognition
, vol.46
, Issue.3
, pp. 865-874
-
-
Li, Y.1
Tax, D.2
Duin, R.3
Loog, M.4
-
17
-
-
0031704194
-
A note on learning from multiple-instance examples
-
Blum, A., Kalai, A.: A note on learning from multiple-instance examples. Machine Learning 30(1), 23-29 (1998)
-
(1998)
Machine Learning
, vol.30
, Issue.1
, pp. 23-29
-
-
Blum, A.1
Kalai, A.2
-
19
-
-
34547984757
-
On the relation between multi-instance learning and semi-supervised learning
-
Zhou, Z., Xu, J.: On the relation between multi-instance learning and semi-supervised learning. In: Proc. 24th ICML, pp. 1167-1174 (2007)
-
(2007)
Proc. 24th ICML
, pp. 1167-1174
-
-
Zhou, Z.1
Xu, J.2
-
20
-
-
84862292319
-
Deterministic annealing for multiple-instance learning
-
Gehler, P., Chapelle, O.: Deterministic annealing for multiple-instance learning. In: Proc. 11th Int'l Conf. AISTAT, pp. 123-130 (2007)
-
(2007)
Proc. 11th Int'l Conf. AISTAT
, pp. 123-130
-
-
Gehler, P.1
Chapelle, O.2
-
21
-
-
85162536812
-
Convex Multiple-Instance Learning by Estimating Likelihood Ratio
-
Li, F., Sminchisescu, C.: Convex Multiple-Instance Learning by Estimating Likelihood Ratio. In: Adv. Neu. Inf. Proc. Sys., pp. 1-8 (2010)
-
(2010)
Adv. Neu. Inf. Proc. Sys.
, pp. 1-8
-
-
Li, F.1
Sminchisescu, C.2
|