메뉴 건너뛰기




Volumn 48, Issue 1, 2015, Pages 264-275

Multiple instance learning with bag dissimilarities

Author keywords

Dissimilarity representation; Drug activity prediction; Image classification; Multiple instance learning; Point set distance; Text categorization

Indexed keywords

IMAGE CLASSIFICATION; TEXT PROCESSING;

EID: 84908024288     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2014.07.022     Document Type: Article
Times cited : (129)

References (45)
  • 1
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • T. Dietterich, R. Lathrop, and T. Lozano-Pérez Solving the multiple instance problem with axis-parallel rectangles Artif. Intell. 89 1-2 1997 31 71
    • (1997) Artif. Intell. , vol.89 , Issue.12 , pp. 31-71
    • Dietterich, T.1    Lathrop, R.2    Lozano-Pérez, T.3
  • 3
    • 33947180489 scopus 로고    scopus 로고
    • MILES multiple-instance learning via embedded instance selection
    • Y. Chen, J. Bi, and J. Wang MILES multiple-instance learning via embedded instance selection IEEE Trans. Pattern Anal. Mach. Intell. 28 12 2006 1931 1947
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.12 , pp. 1931-1947
    • Chen, Y.1    Bi, J.2    Wang, J.3
  • 4
    • 56449086489 scopus 로고    scopus 로고
    • Adaptive p-posterior mixture-model kernels for multiple instance learning
    • H.Y. Wang, Q. Yang, H. Zha, Adaptive p-posterior mixture-model kernels for multiple instance learning, in: International Conference on Machine Learning, 2008, pp. 1136-1143.
    • (2008) International Conference on Machine Learning , pp. 1136-1143
    • Wang, H.Y.1    Yang, Q.2    Zha, H.3
  • 5
    • 9444267142 scopus 로고    scopus 로고
    • A two-level learning method for generalized multi-instance problems
    • Springer, Berlin, Heidelberg
    • N. Weidmann, E. Frank, B. Pfahringer, A two-level learning method for generalized multi-instance problems, in: European Conference on Machine Learning, Springer, Berlin, Heidelberg, 2003, pp. 468-479.
    • (2003) European Conference on Machine Learning , pp. 468-479
    • Weidmann, N.1    Frank, E.2    Pfahringer, B.3
  • 7
    • 77952349835 scopus 로고    scopus 로고
    • A review of multi-instance learning assumptions
    • J. Foulds, and E. Frank A review of multi-instance learning assumptions Knowl. Eng. Rev. 25 1 2010 1
    • (2010) Knowl. Eng. Rev. , vol.25 , Issue.1 , pp. 1
    • Foulds, J.1    Frank, E.2
  • 8
    • 0141596676 scopus 로고    scopus 로고
    • Solving the multiple-instance problem: A lazy learning approach
    • J. Wang, Solving the multiple-instance problem: a lazy learning approach, in: International Conference on Machine Learning, 2000, pp. 1119-1125.
    • (2000) International Conference on Machine Learning , pp. 1119-1125
    • Wang, J.1
  • 16
    • 68149124491 scopus 로고    scopus 로고
    • Multi-instance clustering with applications to multi-instance prediction
    • M.L. Zhang, and Z.H. Zhou Multi-instance clustering with applications to multi-instance prediction Appl. Intell. 31 1 2009 47 68
    • (2009) Appl. Intell. , vol.31 , Issue.1 , pp. 47-68
    • Zhang, M.L.1    Zhou, Z.H.2
  • 17
    • 84870251236 scopus 로고    scopus 로고
    • Multiple-instance learning as a classifier combining problem
    • Y. Li, D.M.J. Tax, R.P.W. Duin, and M. Loog Multiple-instance learning as a classifier combining problem Pattern Recognit. 46 3 2012 865 874
    • (2012) Pattern Recognit. , vol.46 , Issue.3 , pp. 865-874
    • Li, Y.1    Tax, D.M.J.2    Duin, R.P.W.3    Loog, M.4
  • 18
    • 10044253348 scopus 로고    scopus 로고
    • Static posterior probability fusion for signal detection: Applications in the detection of interstitial diseases in chest radiographs
    • M. Loog, B. van Ginneken, Static posterior probability fusion for signal detection: applications in the detection of interstitial diseases in chest radiographs, in: International Conference on Pattern Recognition, vol. 1, 2004, pp. 644-647.
    • (2004) International Conference on Pattern Recognition , vol.1 , pp. 644-647
    • Loog, M.1    Van Ginneken, B.2
  • 19
    • 31844448950 scopus 로고    scopus 로고
    • Supervised versus multiple instance learning: An empirical comparison
    • S. Ray, M. Craven, Supervised versus multiple instance learning: an empirical comparison, in: International Conference on Machine Learning, 2005, pp. 697-704.
    • (2005) International Conference on Machine Learning , pp. 697-704
    • Ray, S.1    Craven, M.2
  • 21
    • 71149085943 scopus 로고    scopus 로고
    • Multi-instance learning by treating instances as non-IID samples
    • Z. Zhou, Y. Sun, Y. Li, Multi-instance learning by treating instances as non-IID samples, in: International Conference on Machine Learning, 2009, pp. 1249-1256.
    • (2009) International Conference on Machine Learning , pp. 1249-1256
    • Zhou, Z.1    Sun, Y.2    Li, Y.3
  • 25
    • 14644420955 scopus 로고    scopus 로고
    • A new Hausdorff distance for image matching
    • C. Zhao, W. Shi, and Y. Deng A new Hausdorff distance for image matching Pattern Recognit. Lett. 26 5 2005 581 586
    • (2005) Pattern Recognit. Lett. , vol.26 , Issue.5 , pp. 581-586
    • Zhao, C.1    Shi, W.2    Deng, Y.3
  • 28
    • 80051601039 scopus 로고    scopus 로고
    • On accuracy of PDF divergence estimators and their applicability to representative data sampling
    • M. Budka, B. Gabrys, and K. Musial On accuracy of PDF divergence estimators and their applicability to representative data sampling Entropy 13 7 2011 1229 1266
    • (2011) Entropy , vol.13 , Issue.7 , pp. 1229-1266
    • Budka, M.1    Gabrys, B.2    Musial, K.3
  • 29
    • 0034313871 scopus 로고    scopus 로고
    • The earth mover's distance as a metric for image retrieval
    • Y. Rubner, C. Tomasi, and L. Guibas The earth mover's distance as a metric for image retrieval Int. J. Comput. Vis. 40 2 2000 99 121
    • (2000) Int. J. Comput. Vis. , vol.40 , Issue.2 , pp. 99-121
    • Rubner, Y.1    Tomasi, C.2    Guibas, L.3
  • 30
    • 0036604999 scopus 로고    scopus 로고
    • Dissimilarity representations allow for building good classifiers
    • E. Pękalska, and R.P.W. Duin Dissimilarity representations allow for building good classifiers Pattern Recognit. Lett. 23 8 2002 943 956
    • (2002) Pattern Recognit. Lett. , vol.23 , Issue.8 , pp. 943-956
    • Pękalska, E.1    Duin, R.P.W.2
  • 31
    • 70350723650 scopus 로고    scopus 로고
    • A theory of learning with similarity functions
    • M.-F. Balcan, A. Blum, and N. Srebro A theory of learning with similarity functions Mach. Learn. 72 1-2 2008 89 112
    • (2008) Mach. Learn. , vol.72 , Issue.12 , pp. 89-112
    • Balcan, M.-F.1    Blum, A.2    Srebro, N.3
  • 32
    • 27744546228 scopus 로고    scopus 로고
    • Prototype selection for dissimilarity-based classifiers
    • E. Pękalska, R.P.W. Duin, and P. Paclík Prototype selection for dissimilarity-based classifiers Pattern Recognit. 39 2 2006 189 208
    • (2006) Pattern Recognit. , vol.39 , Issue.2 , pp. 189-208
    • Pękalska, E.1    Duin, R.P.W.2    Paclík, P.3
  • 36
    • 15544389390 scopus 로고    scopus 로고
    • Multi-instance learning based web mining
    • Z.H. Zhou, K. Jiang, and M. Li Multi-instance learning based web mining Appl. Intell. 22 2 2005 135 147
    • (2005) Appl. Intell. , vol.22 , Issue.2 , pp. 135-147
    • Zhou, Z.H.1    Jiang, K.2    Li, M.3
  • 37
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • A. Bradley The use of the area under the ROC curve in the evaluation of machine learning algorithms Pattern Recognit. 30 7 1997 1145 1159
    • (1997) Pattern Recognit. , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.1
  • 38
    • 14644390912 scopus 로고    scopus 로고
    • Using AUC and accuracy in evaluating learning algorithms
    • J. Huang, and C.X. Ling Using AUC and accuracy in evaluating learning algorithms IEEE Trans. Knowl. Data Eng. 17 3 2005 299 310
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.3 , pp. 299-310
    • Huang, J.1    Ling, C.X.2
  • 39
    • 58349091496 scopus 로고    scopus 로고
    • Learning curves for the analysis of multiple instance classifiers
    • Springer, Berlin, Heidelberg
    • D.M.J. Tax, R.P.W. Duin, Learning curves for the analysis of multiple instance classifiers, in: Structural, Syntactic, and Statistical Pattern Recognition, Springer, Berlin, Heidelberg, 2008, pp. 724-733.
    • (2008) Structural, Syntactic, and Statistical Pattern Recognition , pp. 724-733
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 40
    • 0041995203 scopus 로고    scopus 로고
    • A generalized kernel approach to dissimilarity-based classification
    • E. Pękalska, P. Paclik, and R.P.W. Duin A generalized kernel approach to dissimilarity-based classification J. Mach. Learn. Res. 2 2002 175 211
    • (2002) J. Mach. Learn. Res. , vol.2 , pp. 175-211
    • Pękalska, E.1    Paclik, P.2    Duin, R.P.W.3
  • 45
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar Statistical comparisons of classifiers over multiple data sets J. Mach. Learn. Res. 7 2006 1 30
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.