-
1
-
-
41449095257
-
Numerical solutions for fractional reaction-diffusion equations
-
B. Baeumer, M. Kovács, and M. M. Meerschaert, Numerical solutions for fractional reaction-diffusion equations, Comput. Math. Appl., 55 (2008), pp. 2212-2226.
-
(2008)
Comput. Math. Appl.
, vol.55
, pp. 2212-2226
-
-
Baeumer, B.1
Kovács, M.2
Meerschaert, M.M.3
-
2
-
-
0034032484
-
Application of a fractional advection-dispersion equation
-
D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resourc. Res., 36 (2000), pp. 1403-1412.
-
(2000)
Water Resourc. Res.
, vol.36
, pp. 1403-1412
-
-
Benson, D.A.1
Wheatcraft, S.W.2
Meerschaert, M.M.3
-
3
-
-
0034113992
-
The fractional-order governing equation of Levy motion
-
D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, The fractional-order governing equation of Levy motion, Water Resourc. Res., 36 (2000), pp. 1413-1423.
-
(2000)
Water Resourc. Res.
, vol.36
, pp. 1413-1423
-
-
Benson, D.A.1
Wheatcraft, S.W.2
Meerschaert, M.M.3
-
4
-
-
0007136036
-
Fractal Burgers equation I
-
P. Biler, T. Funaki, and W. A. Woyczynski, Fractal Burgers equation I, Differ. Equ., 147 (1998), pp. 1-38.
-
(1998)
Differ. Equ.
, vol.147
, pp. 1-38
-
-
Biler, P.1
Funaki, T.2
Woyczynski, W.A.3
-
5
-
-
0004171153
-
-
Numerical Analysis Report 287, Manchester Centre for Computational Mathematics, Manchester, UK
-
L. Blank, Numerical Treatment of Differential Equations of Fractional Order, Numerical Analysis Report 287, Manchester Centre for Computational Mathematics, Manchester, UK, 1996.
-
(1996)
Numerical Treatment of Differential Equations of Fractional Order
-
-
Blank, L.1
-
6
-
-
33747875704
-
-
Springer-Verlag, Berlin
-
C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods. Fundamentals in Single Domains, Springer-Verlag, Berlin, 2006.
-
(2006)
Spectral Methods. Fundamentals in Single Domains
-
-
Canuto, C.1
Hussaini, M.Y.2
Quarteroni, A.3
Zang, T.A.4
-
7
-
-
84968504287
-
Spectral viscosity approximations to multidimensional scalar conservation laws
-
G.-Q. Chen, Q. Du, and E. Tadmor, Spectral viscosity approximations to multidimensional scalar conservation laws, Math. Comput., 61 (1993), pp. 629-643.
-
(1993)
Math. Comput.
, vol.61
, pp. 629-643
-
-
Chen, G.-Q.1
Du, Q.2
Tadmor, E.3
-
8
-
-
40849115179
-
Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation
-
C.-M. Chen, F. Liu, and K. Burrage, Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation, Appl. Math. Comput., 198 (2008), pp. 754-769.
-
(2008)
Appl. Math. Comput.
, vol.198
, pp. 754-769
-
-
Chen, C.-M.1
Liu, F.2
Burrage, K.3
-
9
-
-
51749116733
-
Finite difference approximations for the fractional Fokker-Planck equation
-
S. Chen, F. Liu, P. Zhuang, and V. Anh, Finite difference approximations for the fractional Fokker-Planck equation, Appl. Math. Model., 33 (2009), pp. 256-273.
-
(2009)
Appl. Math. Model.
, vol.33
, pp. 256-273
-
-
Chen, S.1
Liu, F.2
Zhuang, P.3
Anh, V.4
-
10
-
-
36149001762
-
Numerical algorithm for the fractional Fokker-Planck equation
-
W. Deng, Numerical algorithm for the fractional Fokker-Planck equation, J. Comput. Phys., 227 (2007), pp. 1510-1522.
-
(2007)
J. Comput. Phys.
, vol.227
, pp. 1510-1522
-
-
Deng, W.1
-
11
-
-
59349113701
-
Finite element method for the space and time fractional Fokker-Planck equation
-
W. Deng, Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47 (2008), pp. 204-226.
-
(2008)
SIAM J. Numer. Anal.
, vol.47
, pp. 204-226
-
-
Deng, W.1
-
12
-
-
0001618393
-
An algorithm for the numerical solution of differential equations of fractional order
-
K. Diethelm, An algorithm for the numerical solution of differential equations of fractional order, Electron Trans. Numer. Anal., 5 (1997), pp. 1-6.
-
(1997)
Electron Trans. Numer. Anal.
, vol.5
, pp. 1-6
-
-
Diethelm, K.1
-
13
-
-
0036650479
-
A predictor-corrector approach for the numerical solution of fractional differential equations
-
K. Diethelm, N. Ford, and A. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), pp. 3-22.
-
(2002)
Nonlinear Dynam.
, vol.29
, pp. 3-22
-
-
Diethelm, K.1
Ford, N.2
Freed, A.3
-
14
-
-
0043044718
-
Numerical solution of fractional order differential equations by extroplation
-
K. Diethelm and G. Walz, Numerical solution of fractional order differential equations by extroplation, Numer. Algorithms, 16 (1997), pp. 231-253.
-
(1997)
Numer. Algorithms
, vol.16
, pp. 231-253
-
-
Diethelm, K.1
Walz, G.2
-
15
-
-
33646262074
-
Variational formulation for the stationary fractional advection dispersion equation
-
V. J. Erin and J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differential Equations, 22 (2006), pp. 558-576.
-
(2006)
Numer. Methods Partial Differential Equations
, vol.22
, pp. 558-576
-
-
Erin, V.J.1
Roop, J.P.2
-
16
-
-
17144394995
-
-
Numerical Analysis Report 385, Manchester Centre for Computational Mathematics, Manchester, UK
-
N. Ford and A. Simpson, The Numerical Solution of Fractional Differential Equations: Speed Versus Accuracy, Numerical Analysis Report 385, Manchester Centre for Computational Mathematics, Manchester, UK, 2001.
-
(2001)
The Numerical Solution of Fractional Differential Equations: Speed Versus Accuracy
-
-
Ford, N.1
Simpson, A.2
-
17
-
-
84968494170
-
A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations
-
D. Funaro and D. Gottlieb, A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations, Math. Comput., 51 (1988), pp. 599-613.
-
(1988)
Math. Comput.
, vol.51
, pp. 599-613
-
-
Funaro, D.1
Gottlieb, D.2
-
18
-
-
0026807402
-
A theory of transport phenomena in disordered systems
-
R. Giona and H. E. Roman, A theory of transport phenomena in disordered systems, Chem. Eng. J., 49 (1992), pp. 1-10.
-
(1992)
Chem. Eng. J.
, vol.49
, pp. 1-10
-
-
Giona, R.1
Roman, H.E.2
-
19
-
-
0000103589
-
Wright function as scale-invariant solution of the diffusion wave equation
-
R. Georenflo, Y. Luchko, and F. Mainardi, Wright function as scale-invariant solution of the diffusion wave equation, J. Comput. Appl. Math., 118 (2000), pp. 175-191.
-
(2000)
J. Comput. Appl. Math.
, vol.118
, pp. 175-191
-
-
Georenflo, R.1
Luchko, Y.2
Mainardi, F.3
-
20
-
-
34548407719
-
Computing nearly singular solutions using pseudo-spectral methods
-
T. Y. Hou and R. Li, Computing nearly singular solutions using pseudo-spectral methods, J. Comput. Phys., 226 (2007), pp. 379-397.
-
(2007)
J. Comput. Phys.
, vol.226
, pp. 379-397
-
-
Hou, T.Y.1
Li, R.2
-
21
-
-
17144427014
-
The accuracy and stability of an implicit solution method for the fractional diffusion equation
-
A. T. M. Langlands and B. I. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205 (2005), pp. 719-736.
-
(2005)
J. Comput. Phys.
, vol.205
, pp. 719-736
-
-
Langlands, A.T.M.1
Henry, B.I.2
-
22
-
-
84868198807
-
Spectral approximations to the fractional integral and derivative
-
C.-P. Li, F. Zeng, and F. Liu, Spectral approximations to the fractional integral and derivative, Fract. Calc. Appl. Anal., 15 (2012), pp. 383-406.
-
(2012)
Fract. Calc. Appl. Anal.
, vol.15
, pp. 383-406
-
-
Li, C.-P.1
Zeng, F.2
Liu, F.3
-
23
-
-
77958536189
-
A space-time spectral method for the time fractional diffusion equation
-
X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), pp. 2108-2131.
-
(2009)
SIAM J. Numer. Anal.
, vol.47
, pp. 2108-2131
-
-
Li, X.1
Xu, C.2
-
24
-
-
34547548712
-
Finite difference/spectral approximations for the time-fractional diffusion equation
-
Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), pp. 1533-1552.
-
(2007)
J. Comput. Phys.
, vol.225
, pp. 1533-1552
-
-
Lin, Y.1
Xu, C.2
-
25
-
-
1542425102
-
Numerical solution of the space fractional Fokker-Planck equation
-
F. Liu, V. Anh, and I. Turner, Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math., 166 (2004), pp. 209-219.
-
(2004)
J. Comput. Appl. Math.
, vol.166
, pp. 209-219
-
-
Liu, F.1
Anh, V.2
Turner, I.3
-
26
-
-
0348230399
-
Time fractional advection-dispersion equation
-
F. Liu, V. Anh, I. Turner, and P. Zhuang, Time fractional advection-dispersion equation, J. Appl. Math. Comput., 13 (2003), pp. 233-245.
-
(2003)
J. Appl. Math. Comput.
, vol.13
, pp. 233-245
-
-
Liu, F.1
Anh, V.2
Turner, I.3
Zhuang, P.4
-
27
-
-
4444368867
-
Finite difference approximations for fractional advection-dispersion flow equations
-
M. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172 (2004), pp. 65-77.
-
(2004)
J. Comput. Appl. Math.
, vol.172
, pp. 65-77
-
-
Meerschaert, M.M.1
Tadjeran, C.2
-
28
-
-
18144408075
-
Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach
-
R. Metzler, E. Barkai, and J. Klafter, Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach, Phys. Rev. Lett., 82 (1999), 3563.
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 3563
-
-
Metzler, R.1
Barkai, E.2
Klafter, J.3
-
29
-
-
0033562044
-
Deriving fractional Fokker-Planck equations from a generalised matter equation
-
R. Metzler, E. Barkai, and J. Klafter, Deriving fractional Fokker-Planck equations from a generalised matter equation, Europhys. Lett., 46 (1999), pp. 431-436.
-
(1999)
Europhys. Lett.
, vol.46
, pp. 431-436
-
-
Metzler, R.1
Barkai, E.2
Klafter, J.3
-
30
-
-
0002641421
-
The random walk's guide to anomolous diffusion: A fractional dynamic approach
-
R. Metzler and J. Krafter, The random walk's guide to anomolous diffusion: A fractional dynamic approach, Phys. Rep., 239 (2000), pp. 1-72.
-
(2000)
Phys. Rep.
, vol.239
, pp. 1-72
-
-
Metzler, R.1
Krafter, J.2
-
32
-
-
84868502319
-
Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions
-
J. Ren, Z. Sun, and X. Zhao, Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions, J. Comput. Phys., 232 (2013), pp. 456-467.
-
(2013)
J. Comput. Phys.
, vol.232
, pp. 456-467
-
-
Ren, J.1
Sun, Z.2
Zhao, X.3
-
34
-
-
0003598080
-
-
New York
-
S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, 1993.
-
(1993)
Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach
-
-
Samko, S.G.1
Kilbas, A.A.2
Marichev, O.I.3
-
35
-
-
0001553919
-
Fractional diffusion and wave equations
-
W. R. Schneider and W. Wyss, Fractional diffusion and wave equations, J. Math. Phys., 30 (1989), pp. 134-144.
-
(1989)
J. Math. Phys.
, vol.30
, pp. 134-144
-
-
Schneider, W.R.1
Wyss, W.2
-
36
-
-
79951851714
-
Numerical approximations and solution techniques for the spacetime Riesz-Caputo fractional advection-diffusion equation
-
S. Shen, F. Liu, and V. Anh, Numerical approximations and solution techniques for the spacetime Riesz-Caputo fractional advection-diffusion equation, Numer. Algorithms, 56 (2011), pp. 383-403.
-
(2011)
Numer. Algorithms
, vol.56
, pp. 383-403
-
-
Shen, S.1
Liu, F.2
Anh, V.3
-
38
-
-
34147094358
-
Fourierization of the Legendre-Galerkin method and a new spacetime spectral method
-
J. Shen and L.-L. Wang, Fourierization of the Legendre-Galerkin method and a new spacetime spectral method, Appl. Numer. Math., 57 (2007), pp. 710-720.
-
(2007)
Appl. Numer. Math.
, vol.57
, pp. 710-720
-
-
Shen, J.1
Wang, L.-L.2
-
39
-
-
31744438550
-
A second order accurate numerical approximation for the fractional diffusion equation
-
C. Tadjeran, M. M. Meerschaert, and H.-P. Scheffler, A second order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys., 213 (2006), pp. 205-213.
-
(2006)
J. Comput. Phys.
, vol.213
, pp. 205-213
-
-
Tadjeran, C.1
Meerschaert, M.M.2
Scheffler, H.-P.3
-
40
-
-
0009481303
-
The fractional diffusion equation
-
W. Wyss, The fractional diffusion equation, J. Math. Phys., 27 (1986), pp. 2782-2785.
-
(1986)
J. Math. Phys.
, vol.27
, pp. 2782-2785
-
-
Wyss, W.1
-
41
-
-
84928980173
-
Numerical solution techniques for time-and space-fractional Fokker-Planck equations
-
J. Sabatier, R. Magin, B. Vinagre, D. Baleanu, eds., Ankara, Turkey
-
Q. Yang, F. Liu, and I. Turner, Numerical solution techniques for time-and space-fractional Fokker-Planck equations, in Proceedings of the 3rd International Federation of Automatic Control Workshop on Fractional Differential and Its Applications, J. Sabatier, R. Magin, B. Vinagre, D. Baleanu, eds., Ankara, Turkey, 2008.
-
(2008)
Proceedings of the 3rd International Federation of Automatic Control Workshop on Fractional Differential and Its Applications
-
-
Yang, Q.1
Liu, F.2
Turner, I.3
-
42
-
-
33646128485
-
Weighted average finite difference methods for fractional diffusion equations
-
S. B. Yuste, Weighted average finite difference methods for fractional diffusion equations, J. Comput. Phys., 216 (2006), pp. 264-274.
-
(2006)
J. Comput. Phys.
, vol.216
, pp. 264-274
-
-
Yuste, S.B.1
-
43
-
-
25444472344
-
On an explicit finite difference method for fractional diffusion equations
-
S. B. Yuste and L. Acedo, On an explicit finite difference method for fractional diffusion equations, SIAM J. Numer. Anal., 42 (2005), pp. 1862-1874.
-
(2005)
SIAM J. Numer. Anal.
, vol.42
, pp. 1862-1874
-
-
Yuste, S.B.1
Acedo, L.2
-
44
-
-
84880661301
-
Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation
-
M. Zayernouri and G. E. Karniadakis, Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation, J. Comput. Phys., 252 (2013), pp. 495-517.
-
(2013)
J. Comput. Phys.
, vol.252
, pp. 495-517
-
-
Zayernouri, M.1
Karniadakis, G.E.2
-
46
-
-
84892586026
-
The use of finite difference/element approaches for solving the time-fractional subdiffusion equation
-
F. Zeng, C. Li, and F. Liu, I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput., 35 (2013), pp. A2976-A3000.
-
(2013)
SIAM J. Sci. Comput.
, vol.35
, pp. A2976-A3000
-
-
Zeng, F.1
Li, C.2
Liu, F.3
Turner, I.4
-
47
-
-
84908549956
-
Crank-Nicolson ADI spectral method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation
-
F. Zeng, F. Liu, C. Li, K. Burrage, I. Turner, and V. Anh, Crank-Nicolson ADI spectral method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation, SIAM J. Numer. Anal., 52 (2014), pp. 2599-2622.
-
(2014)
SIAM J. Numer. Anal.
, vol.52
, pp. 2599-2622
-
-
Zeng, F.1
Liu, F.2
Li, C.3
Burrage, K.4
Turner, I.5
Anh, V.6
-
48
-
-
77958016082
-
Galerkin finite element approximation of symmetric spacefractional partial differential equations
-
H. Zhang, F. Liu, and V. Anh, Galerkin finite element approximation of symmetric spacefractional partial differential equations, Appl. Math. Comput., 217 (2010), pp. 2534-2545.
-
(2010)
Appl. Math. Comput.
, vol.217
, pp. 2534-2545
-
-
Zhang, H.1
Liu, F.2
Anh, V.3
-
49
-
-
79956124918
-
A box-type scheme for fractional sub-diffusion equation with Neumann boundary condition
-
X. Zhao and Z. Sun, A box-type scheme for fractional sub-diffusion equation with Neumann boundary condition, J. Comput. Phys., 230 (2011), pp. 6061-6074.
-
(2011)
J. Comput. Phys.
, vol.230
, pp. 6061-6074
-
-
Zhao, X.1
Sun, Z.2
|