메뉴 건너뛰기




Volumn 37, Issue 2, 2015, Pages A701-A724

A novel high order space-time spectral method for the time fractional fokker-planck equation

Author keywords

Caputo fractional derivative; Riemann Liouville fractional derivative; Spectral method; Time fractional Fokker Planck equation

Indexed keywords

DIFFERENTIATION (CALCULUS); FOKKER PLANCK EQUATION; INITIAL VALUE PROBLEMS; POLYNOMIALS; SPECTROSCOPY;

EID: 84928954910     PISSN: 10648275     EISSN: 10957197     Source Type: Journal    
DOI: 10.1137/140980545     Document Type: Article
Times cited : (187)

References (49)
  • 1
    • 41449095257 scopus 로고    scopus 로고
    • Numerical solutions for fractional reaction-diffusion equations
    • B. Baeumer, M. Kovács, and M. M. Meerschaert, Numerical solutions for fractional reaction-diffusion equations, Comput. Math. Appl., 55 (2008), pp. 2212-2226.
    • (2008) Comput. Math. Appl. , vol.55 , pp. 2212-2226
    • Baeumer, B.1    Kovács, M.2    Meerschaert, M.M.3
  • 2
    • 0034032484 scopus 로고    scopus 로고
    • Application of a fractional advection-dispersion equation
    • D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resourc. Res., 36 (2000), pp. 1403-1412.
    • (2000) Water Resourc. Res. , vol.36 , pp. 1403-1412
    • Benson, D.A.1    Wheatcraft, S.W.2    Meerschaert, M.M.3
  • 3
  • 7
    • 84968504287 scopus 로고
    • Spectral viscosity approximations to multidimensional scalar conservation laws
    • G.-Q. Chen, Q. Du, and E. Tadmor, Spectral viscosity approximations to multidimensional scalar conservation laws, Math. Comput., 61 (1993), pp. 629-643.
    • (1993) Math. Comput. , vol.61 , pp. 629-643
    • Chen, G.-Q.1    Du, Q.2    Tadmor, E.3
  • 8
    • 40849115179 scopus 로고    scopus 로고
    • Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation
    • C.-M. Chen, F. Liu, and K. Burrage, Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation, Appl. Math. Comput., 198 (2008), pp. 754-769.
    • (2008) Appl. Math. Comput. , vol.198 , pp. 754-769
    • Chen, C.-M.1    Liu, F.2    Burrage, K.3
  • 9
    • 51749116733 scopus 로고    scopus 로고
    • Finite difference approximations for the fractional Fokker-Planck equation
    • S. Chen, F. Liu, P. Zhuang, and V. Anh, Finite difference approximations for the fractional Fokker-Planck equation, Appl. Math. Model., 33 (2009), pp. 256-273.
    • (2009) Appl. Math. Model. , vol.33 , pp. 256-273
    • Chen, S.1    Liu, F.2    Zhuang, P.3    Anh, V.4
  • 10
    • 36149001762 scopus 로고    scopus 로고
    • Numerical algorithm for the fractional Fokker-Planck equation
    • W. Deng, Numerical algorithm for the fractional Fokker-Planck equation, J. Comput. Phys., 227 (2007), pp. 1510-1522.
    • (2007) J. Comput. Phys. , vol.227 , pp. 1510-1522
    • Deng, W.1
  • 11
    • 59349113701 scopus 로고    scopus 로고
    • Finite element method for the space and time fractional Fokker-Planck equation
    • W. Deng, Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47 (2008), pp. 204-226.
    • (2008) SIAM J. Numer. Anal. , vol.47 , pp. 204-226
    • Deng, W.1
  • 12
    • 0001618393 scopus 로고    scopus 로고
    • An algorithm for the numerical solution of differential equations of fractional order
    • K. Diethelm, An algorithm for the numerical solution of differential equations of fractional order, Electron Trans. Numer. Anal., 5 (1997), pp. 1-6.
    • (1997) Electron Trans. Numer. Anal. , vol.5 , pp. 1-6
    • Diethelm, K.1
  • 13
    • 0036650479 scopus 로고    scopus 로고
    • A predictor-corrector approach for the numerical solution of fractional differential equations
    • K. Diethelm, N. Ford, and A. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), pp. 3-22.
    • (2002) Nonlinear Dynam. , vol.29 , pp. 3-22
    • Diethelm, K.1    Ford, N.2    Freed, A.3
  • 14
    • 0043044718 scopus 로고    scopus 로고
    • Numerical solution of fractional order differential equations by extroplation
    • K. Diethelm and G. Walz, Numerical solution of fractional order differential equations by extroplation, Numer. Algorithms, 16 (1997), pp. 231-253.
    • (1997) Numer. Algorithms , vol.16 , pp. 231-253
    • Diethelm, K.1    Walz, G.2
  • 15
    • 33646262074 scopus 로고    scopus 로고
    • Variational formulation for the stationary fractional advection dispersion equation
    • V. J. Erin and J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differential Equations, 22 (2006), pp. 558-576.
    • (2006) Numer. Methods Partial Differential Equations , vol.22 , pp. 558-576
    • Erin, V.J.1    Roop, J.P.2
  • 17
    • 84968494170 scopus 로고
    • A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations
    • D. Funaro and D. Gottlieb, A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations, Math. Comput., 51 (1988), pp. 599-613.
    • (1988) Math. Comput. , vol.51 , pp. 599-613
    • Funaro, D.1    Gottlieb, D.2
  • 18
    • 0026807402 scopus 로고
    • A theory of transport phenomena in disordered systems
    • R. Giona and H. E. Roman, A theory of transport phenomena in disordered systems, Chem. Eng. J., 49 (1992), pp. 1-10.
    • (1992) Chem. Eng. J. , vol.49 , pp. 1-10
    • Giona, R.1    Roman, H.E.2
  • 19
    • 0000103589 scopus 로고    scopus 로고
    • Wright function as scale-invariant solution of the diffusion wave equation
    • R. Georenflo, Y. Luchko, and F. Mainardi, Wright function as scale-invariant solution of the diffusion wave equation, J. Comput. Appl. Math., 118 (2000), pp. 175-191.
    • (2000) J. Comput. Appl. Math. , vol.118 , pp. 175-191
    • Georenflo, R.1    Luchko, Y.2    Mainardi, F.3
  • 20
    • 34548407719 scopus 로고    scopus 로고
    • Computing nearly singular solutions using pseudo-spectral methods
    • T. Y. Hou and R. Li, Computing nearly singular solutions using pseudo-spectral methods, J. Comput. Phys., 226 (2007), pp. 379-397.
    • (2007) J. Comput. Phys. , vol.226 , pp. 379-397
    • Hou, T.Y.1    Li, R.2
  • 21
    • 17144427014 scopus 로고    scopus 로고
    • The accuracy and stability of an implicit solution method for the fractional diffusion equation
    • A. T. M. Langlands and B. I. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205 (2005), pp. 719-736.
    • (2005) J. Comput. Phys. , vol.205 , pp. 719-736
    • Langlands, A.T.M.1    Henry, B.I.2
  • 22
    • 84868198807 scopus 로고    scopus 로고
    • Spectral approximations to the fractional integral and derivative
    • C.-P. Li, F. Zeng, and F. Liu, Spectral approximations to the fractional integral and derivative, Fract. Calc. Appl. Anal., 15 (2012), pp. 383-406.
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , pp. 383-406
    • Li, C.-P.1    Zeng, F.2    Liu, F.3
  • 23
    • 77958536189 scopus 로고    scopus 로고
    • A space-time spectral method for the time fractional diffusion equation
    • X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), pp. 2108-2131.
    • (2009) SIAM J. Numer. Anal. , vol.47 , pp. 2108-2131
    • Li, X.1    Xu, C.2
  • 24
    • 34547548712 scopus 로고    scopus 로고
    • Finite difference/spectral approximations for the time-fractional diffusion equation
    • Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), pp. 1533-1552.
    • (2007) J. Comput. Phys. , vol.225 , pp. 1533-1552
    • Lin, Y.1    Xu, C.2
  • 25
    • 1542425102 scopus 로고    scopus 로고
    • Numerical solution of the space fractional Fokker-Planck equation
    • F. Liu, V. Anh, and I. Turner, Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math., 166 (2004), pp. 209-219.
    • (2004) J. Comput. Appl. Math. , vol.166 , pp. 209-219
    • Liu, F.1    Anh, V.2    Turner, I.3
  • 26
    • 0348230399 scopus 로고    scopus 로고
    • Time fractional advection-dispersion equation
    • F. Liu, V. Anh, I. Turner, and P. Zhuang, Time fractional advection-dispersion equation, J. Appl. Math. Comput., 13 (2003), pp. 233-245.
    • (2003) J. Appl. Math. Comput. , vol.13 , pp. 233-245
    • Liu, F.1    Anh, V.2    Turner, I.3    Zhuang, P.4
  • 27
    • 4444368867 scopus 로고    scopus 로고
    • Finite difference approximations for fractional advection-dispersion flow equations
    • M. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172 (2004), pp. 65-77.
    • (2004) J. Comput. Appl. Math. , vol.172 , pp. 65-77
    • Meerschaert, M.M.1    Tadjeran, C.2
  • 28
    • 18144408075 scopus 로고    scopus 로고
    • Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach
    • R. Metzler, E. Barkai, and J. Klafter, Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach, Phys. Rev. Lett., 82 (1999), 3563.
    • (1999) Phys. Rev. Lett. , vol.82 , pp. 3563
    • Metzler, R.1    Barkai, E.2    Klafter, J.3
  • 29
    • 0033562044 scopus 로고    scopus 로고
    • Deriving fractional Fokker-Planck equations from a generalised matter equation
    • R. Metzler, E. Barkai, and J. Klafter, Deriving fractional Fokker-Planck equations from a generalised matter equation, Europhys. Lett., 46 (1999), pp. 431-436.
    • (1999) Europhys. Lett. , vol.46 , pp. 431-436
    • Metzler, R.1    Barkai, E.2    Klafter, J.3
  • 30
    • 0002641421 scopus 로고    scopus 로고
    • The random walk's guide to anomolous diffusion: A fractional dynamic approach
    • R. Metzler and J. Krafter, The random walk's guide to anomolous diffusion: A fractional dynamic approach, Phys. Rep., 239 (2000), pp. 1-72.
    • (2000) Phys. Rep. , vol.239 , pp. 1-72
    • Metzler, R.1    Krafter, J.2
  • 32
    • 84868502319 scopus 로고    scopus 로고
    • Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions
    • J. Ren, Z. Sun, and X. Zhao, Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions, J. Comput. Phys., 232 (2013), pp. 456-467.
    • (2013) J. Comput. Phys. , vol.232 , pp. 456-467
    • Ren, J.1    Sun, Z.2    Zhao, X.3
  • 35
    • 0001553919 scopus 로고
    • Fractional diffusion and wave equations
    • W. R. Schneider and W. Wyss, Fractional diffusion and wave equations, J. Math. Phys., 30 (1989), pp. 134-144.
    • (1989) J. Math. Phys. , vol.30 , pp. 134-144
    • Schneider, W.R.1    Wyss, W.2
  • 36
    • 79951851714 scopus 로고    scopus 로고
    • Numerical approximations and solution techniques for the spacetime Riesz-Caputo fractional advection-diffusion equation
    • S. Shen, F. Liu, and V. Anh, Numerical approximations and solution techniques for the spacetime Riesz-Caputo fractional advection-diffusion equation, Numer. Algorithms, 56 (2011), pp. 383-403.
    • (2011) Numer. Algorithms , vol.56 , pp. 383-403
    • Shen, S.1    Liu, F.2    Anh, V.3
  • 38
    • 34147094358 scopus 로고    scopus 로고
    • Fourierization of the Legendre-Galerkin method and a new spacetime spectral method
    • J. Shen and L.-L. Wang, Fourierization of the Legendre-Galerkin method and a new spacetime spectral method, Appl. Numer. Math., 57 (2007), pp. 710-720.
    • (2007) Appl. Numer. Math. , vol.57 , pp. 710-720
    • Shen, J.1    Wang, L.-L.2
  • 39
    • 31744438550 scopus 로고    scopus 로고
    • A second order accurate numerical approximation for the fractional diffusion equation
    • C. Tadjeran, M. M. Meerschaert, and H.-P. Scheffler, A second order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys., 213 (2006), pp. 205-213.
    • (2006) J. Comput. Phys. , vol.213 , pp. 205-213
    • Tadjeran, C.1    Meerschaert, M.M.2    Scheffler, H.-P.3
  • 40
    • 0009481303 scopus 로고
    • The fractional diffusion equation
    • W. Wyss, The fractional diffusion equation, J. Math. Phys., 27 (1986), pp. 2782-2785.
    • (1986) J. Math. Phys. , vol.27 , pp. 2782-2785
    • Wyss, W.1
  • 42
    • 33646128485 scopus 로고    scopus 로고
    • Weighted average finite difference methods for fractional diffusion equations
    • S. B. Yuste, Weighted average finite difference methods for fractional diffusion equations, J. Comput. Phys., 216 (2006), pp. 264-274.
    • (2006) J. Comput. Phys. , vol.216 , pp. 264-274
    • Yuste, S.B.1
  • 43
    • 25444472344 scopus 로고    scopus 로고
    • On an explicit finite difference method for fractional diffusion equations
    • S. B. Yuste and L. Acedo, On an explicit finite difference method for fractional diffusion equations, SIAM J. Numer. Anal., 42 (2005), pp. 1862-1874.
    • (2005) SIAM J. Numer. Anal. , vol.42 , pp. 1862-1874
    • Yuste, S.B.1    Acedo, L.2
  • 44
    • 84880661301 scopus 로고    scopus 로고
    • Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation
    • M. Zayernouri and G. E. Karniadakis, Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation, J. Comput. Phys., 252 (2013), pp. 495-517.
    • (2013) J. Comput. Phys. , vol.252 , pp. 495-517
    • Zayernouri, M.1    Karniadakis, G.E.2
  • 45
  • 46
    • 84892586026 scopus 로고    scopus 로고
    • The use of finite difference/element approaches for solving the time-fractional subdiffusion equation
    • F. Zeng, C. Li, and F. Liu, I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput., 35 (2013), pp. A2976-A3000.
    • (2013) SIAM J. Sci. Comput. , vol.35 , pp. A2976-A3000
    • Zeng, F.1    Li, C.2    Liu, F.3    Turner, I.4
  • 47
    • 84908549956 scopus 로고    scopus 로고
    • Crank-Nicolson ADI spectral method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation
    • F. Zeng, F. Liu, C. Li, K. Burrage, I. Turner, and V. Anh, Crank-Nicolson ADI spectral method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation, SIAM J. Numer. Anal., 52 (2014), pp. 2599-2622.
    • (2014) SIAM J. Numer. Anal. , vol.52 , pp. 2599-2622
    • Zeng, F.1    Liu, F.2    Li, C.3    Burrage, K.4    Turner, I.5    Anh, V.6
  • 48
    • 77958016082 scopus 로고    scopus 로고
    • Galerkin finite element approximation of symmetric spacefractional partial differential equations
    • H. Zhang, F. Liu, and V. Anh, Galerkin finite element approximation of symmetric spacefractional partial differential equations, Appl. Math. Comput., 217 (2010), pp. 2534-2545.
    • (2010) Appl. Math. Comput. , vol.217 , pp. 2534-2545
    • Zhang, H.1    Liu, F.2    Anh, V.3
  • 49
    • 79956124918 scopus 로고    scopus 로고
    • A box-type scheme for fractional sub-diffusion equation with Neumann boundary condition
    • X. Zhao and Z. Sun, A box-type scheme for fractional sub-diffusion equation with Neumann boundary condition, J. Comput. Phys., 230 (2011), pp. 6061-6074.
    • (2011) J. Comput. Phys. , vol.230 , pp. 6061-6074
    • Zhao, X.1    Sun, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.