메뉴 건너뛰기




Volumn 4, Issue DEC, 2013, Pages

B-cell lymphoma gene regulatory networks: Biological consistency among inference methods

Author keywords

Aracne; BC3Net; C3Net; Gene regulatory network; GPEA; Statistical inference

Indexed keywords


EID: 84892411193     PISSN: None     EISSN: 16648021     Source Type: Journal    
DOI: 10.3389/fgene.2013.00281     Document Type: Article
Times cited : (23)

References (59)
  • 1
    • 78649299930 scopus 로고    scopus 로고
    • Heteromerization of g protein-coupled receptors: relevance to neurological disorders and neurotherapeutics
    • doi: 10.2174/187152710793361586
    • Albizu, L., Moreno, J., Gonzalez-Maeso, J., and Sealfon, S. (2010). Heteromerization of g protein-coupled receptors: relevance to neurological disorders and neurotherapeutics. CNS Neurol. Disord. Drug Targets 9, 636-650. doi: 10.2174/187152710793361586.
    • (2010) CNS Neurol. Disord. Drug Targets , vol.9 , pp. 636-650
    • Albizu, L.1    Moreno, J.2    Gonzalez-Maeso, J.3    Sealfon, S.4
  • 2
    • 77957141016 scopus 로고    scopus 로고
    • Inferring the conservative causal core of gene regulatory networks
    • doi: 10.1186/1752-0509-4-132
    • Altay, G., and Emmert-Streib, F. (2010). Inferring the conservative causal core of gene regulatory networks. BMC Syst. Biol. 4:132. doi: 10.1186/1752-0509-4-132.
    • (2010) BMC Syst. Biol. , vol.4 , pp. 132
    • Altay, G.1    Emmert-Streib, F.2
  • 3
    • 79959327654 scopus 로고    scopus 로고
    • Structural Influence of gene networks on their inference: analysis of C3NET
    • doi: 10.1186/1745-6150-6-31
    • Altay, G., and Emmert-Streib, F. (2011). Structural Influence of gene networks on their inference: analysis of C3NET. Biol. Dir. 6:31. doi: 10.1186/1745-6150-6-31.
    • (2011) Biol. Dir. , vol.6 , pp. 31
    • Altay, G.1    Emmert-Streib, F.2
  • 4
    • 8744226622 scopus 로고    scopus 로고
    • The role of glutathione in cancer
    • doi: 10.1002/cbf.1149
    • Balendiran, G., Dabur, R., and Fraser, D. (2004). The role of glutathione in cancer. Cell Biochem. Funct. 22, 343-352. doi: 10.1002/cbf.1149.
    • (2004) Cell Biochem. Funct. , vol.22 , pp. 343-352
    • Balendiran, G.1    Dabur, R.2    Fraser, D.3
  • 5
    • 78651339534 scopus 로고    scopus 로고
    • NCBI GEO: archive for functional genomics data sets-10 years on
    • doi: 10.1093/nar/gkq1184
    • Barrett, T., Troup, D., Wilhite, S., Ledoux, P., Evangelista, C., Kim, I., et al. (2011). NCBI GEO: archive for functional genomics data sets-10 years on. Nucleic Acids Res. 39, D1005-D1010. doi: 10.1093/nar/gkq1184.
    • (2011) Nucleic Acids Res. , vol.39
    • Barrett, T.1    Troup, D.2    Wilhite, S.3    Ledoux, P.4    Evangelista, C.5    Kim, I.6
  • 7
    • 77953916879 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B (Methodol.) 57, 125-133.
    • (1995) J. R. Stat. Soc. B (Methodol.) , vol.57 , pp. 125-133
    • Benjamini, Y.1    Hochberg, Y.2
  • 8
    • 84865049521 scopus 로고    scopus 로고
    • HTRIdb: an open-access database for experimentally verified human transcriptional regulation interactions
    • doi: 10.1186/1471-2164-13-405
    • Bovolenta, L., Acencio, M., and Lemke, N. (2012). HTRIdb: an open-access database for experimentally verified human transcriptional regulation interactions. BMC Genomics 13:405. doi: 10.1186/1471-2164-13-405.
    • (2012) BMC Genomics , vol.13 , pp. 405
    • Bovolenta, L.1    Acencio, M.2    Lemke, N.3
  • 9
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • doi: 10.1007/BF00058655
    • Breiman, L. (1996). Bagging Predictors. Mach. Learn. 24, 123-140. doi: 10.1007/BF00058655.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 12
    • 71549127741 scopus 로고    scopus 로고
    • Molecular analysis of the HuD gene in neuroendocrine lung cancers
    • doi: 10.1016/j.lungcan.2009.03.022
    • D'Alessandro, V., Muscarella, L., laTorre, A., Bisceglia, M., Parrella, P., Scaramuzzi, G., et al. (2010). Molecular analysis of the HuD gene in neuroendocrine lung cancers. Lung. Cancer 67, 69-75. doi: 10.1016/j.lungcan.2009.03.022.
    • (2010) Lung. Cancer , vol.67 , pp. 69-75
    • D'Alessandro, V.1    Muscarella, L.2    LaTorre, A.3    Bisceglia, M.4    Parrella, P.5    Scaramuzzi, G.6
  • 14
    • 84877302557 scopus 로고    scopus 로고
    • Interfacing cellular networks of S. cerevisiae and E. coli: Connecting dynamic and genetic information
    • doi: 10.1186/1471-2164-14-324
    • de Matos Simoes, R., Dehmer, M., and Emmert-Streib, F. (2013). Interfacing cellular networks of S. cerevisiae and E. coli: Connecting dynamic and genetic information. BMC Genomics 14:324. doi: 10.1186/1471-2164-14-324.
    • (2013) BMC Genomics , vol.14 , pp. 324
    • De Matos Simoes, R.1    Dehmer, M.2    Emmert-Streib, F.3
  • 15
    • 84855265038 scopus 로고    scopus 로고
    • Influence of statistical estimators of mutual information and data heterogeneity on the inference of gene regulatory networks
    • doi: 10.1371/journal.pone.0029279
    • de Matos Simoes, R., and Emmert-Streib, F. (2011). Influence of statistical estimators of mutual information and data heterogeneity on the inference of gene regulatory networks. PLoS ONE 6:e29279. doi: 10.1371/journal.pone.0029279.
    • (2011) PLoS ONE , vol.6
    • de Matos Simoes, R.1    Emmert-Streib, F.2
  • 16
    • 84859125037 scopus 로고    scopus 로고
    • Bagging statistical network inference from large-scale gene expression data
    • doi: 10.1371/journal.pone.0033624
    • de Matos Simoes, R., and Emmert-Streib, F. (2012). Bagging statistical network inference from large-scale gene expression data. PLoS ONE 7:e33624. doi: 10.1371/journal.pone.0033624.
    • (2012) PLoS ONE , vol.7
    • de Matos Simoes, R.1    Emmert-Streib, F.2
  • 17
    • 84865119369 scopus 로고    scopus 로고
    • Organizational structure and the periphery of the gene regulatory network in B-cell lymphoma
    • doi: 10.1186/1752-0509-6-38
    • de Matos Simoes, R., Tripathi, S., and Emmert-Streib, F. (2012). Organizational structure and the periphery of the gene regulatory network in B-cell lymphoma. BMC Syst. Biol. 6:38. doi: 10.1186/1752-0509-6-38.
    • (2012) BMC Syst. Biol. , vol.6 , pp. 38
    • de Matos Simoes, R.1    Tripathi, S.2    Emmert-Streib, F.3
  • 20
    • 84877135982 scopus 로고    scopus 로고
    • Influence of the experimental design of gene expression studies on the inference of gene regulatory networks: environmental factors
    • doi: 10.7717/peerj.10
    • Emmert-Streib, F. (2013). Influence of the experimental design of gene expression studies on the inference of gene regulatory networks: environmental factors. PeerJ 1:e10. doi: 10.7717/peerj.10.
    • (2013) Peer J , vol.1
    • Emmert-Streib, F.1
  • 21
    • 79960325408 scopus 로고    scopus 로고
    • Networks for Systems Biology: conceptual Connection of Data and Function
    • doi: 10.1049/iet-syb.2010.0025
    • Emmert-Streib, F., and Dehmer, M. (2011). Networks for Systems Biology: conceptual Connection of Data and Function. IET Syst. Biol. 5:185. doi: 10.1049/iet-syb.2010.0025.
    • (2011) IET Syst. Biol. , vol.5 , pp. 185
    • Emmert-Streib, F.1    Dehmer, M.2
  • 22
    • 84859112389 scopus 로고    scopus 로고
    • Statistical inference and reverse engineering of gene regulatory networks from observational expression data
    • doi: 10.3389/fgene.2012.00008
    • Emmert-Streib, F., Glazko, G., Altay, G., and de Matos Simoes, R. (2012). Statistical inference and reverse engineering of gene regulatory networks from observational expression data. Front. Genet. 3:8. doi: 10.3389/fgene.2012.00008.
    • (2012) Front. Genet. , vol.3 , pp. 8
    • Emmert-Streib, F.1    Glazko, G.2    Altay, G.3    de Matos Simoes, R.4
  • 23
    • 0036951509 scopus 로고    scopus 로고
    • Cardiac hypertrophy: role of g protein-coupled receptors
    • doi: 10.1054/jcaf.2002.129283
    • Esposito, G., Rapacciuolo, A., Prasad, S. V. N., and Rockman, H. A. (2002). Cardiac hypertrophy: role of g protein-coupled receptors. J. Card. Fail. 8(6 Part B), S409-S414. doi: 10.1054/jcaf.2002.129283.
    • (2002) J. Card. Fail. , vol.8 , Issue.6 PART B
    • Esposito, G.1    Rapacciuolo, A.2    Prasad, S.V.N.3    Rockman, H.A.4
  • 24
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • doi: 10.1126/science.1094068
    • Friedman, N. (2004). Inferring cellular networks using probabilistic graphical models. Science 303, 799-805. doi: 10.1126/science.1094068.
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 25
    • 84861647487 scopus 로고    scopus 로고
    • Network medicine in drug design: implications for neuroinflammation
    • doi: 10.1016/j.drudis.2012.01.018
    • Ghosh, S., and Basu, A. (2012). Network medicine in drug design: implications for neuroinflammation. Drug Discov. Today 17, 600-607. doi: 10.1016/j.drudis.2012.01.018.
    • (2012) Drug Discov. Today , vol.17 , pp. 600-607
    • Ghosh, S.1    Basu, A.2
  • 27
    • 33645947025 scopus 로고    scopus 로고
    • Desmopressin and other synthetic vasopressin analogues in cancer treatment
    • Gomez, D., Ripoll, G., Giron, S., and Alonso, D. (2006). Desmopressin and other synthetic vasopressin analogues in cancer treatment. Bull. Cancer 93, E7-E12.
    • (2006) Bull. Cancer , vol.93
    • Gomez, D.1    Ripoll, G.2    Giron, S.3    Alonso, D.4
  • 28
    • 0034046989 scopus 로고    scopus 로고
    • Hu immunolabeling as a marker of neural and neuroendocrine differentiation in normal and neoplastic human tissues: assessment using a recombinant anti-Hu Fab Fragment
    • doi: 10.1177/106689690000800205
    • Gultekin, S., Rosai, J., Demopoulos, A., Graus, Y., Posner, J., Dalmau, J., et al. (2000). Hu immunolabeling as a marker of neural and neuroendocrine differentiation in normal and neoplastic human tissues: assessment using a recombinant anti-Hu Fab Fragment. Int. J. Surg. Pathol. 8, 109-117. doi: 10.1177/106689690000800205.
    • (2000) Int. J. Surg. Pathol. , vol.8 , pp. 109-117
    • Gultekin, S.1    Rosai, J.2    Demopoulos, A.3    Graus, Y.4    Posner, J.5    Dalmau, J.6
  • 29
    • 0034614637 scopus 로고    scopus 로고
    • The hallmarks of cancer
    • doi: 10.1016/S0092-8674(00)81683-9
    • Hanahan, D., and Weinberg, R. A. (2000). The hallmarks of cancer. Cell 100, 57-70. doi: 10.1016/S0092-8674(00)81683-9.
    • (2000) Cell , vol.100 , pp. 57-70
    • Hanahan, D.1    Weinberg, R.A.2
  • 30
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: the next generation
    • doi: 10.1016/j.cell.2011.02.013
    • Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-674. doi: 10.1016/j.cell.2011.02.013.
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 31
    • 54249155522 scopus 로고    scopus 로고
    • Network pharmacology: the next paradigm in drug discovery
    • doi: 10.1038/nchembio.118
    • Hopkins, A. L. (2008). Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 4, 682-690. doi: 10.1038/nchembio.118.
    • (2008) Nat. Chem. Biol. , vol.4 , pp. 682-690
    • Hopkins, A.L.1
  • 33
    • 0035799707 scopus 로고    scopus 로고
    • Lethality and centrality in protein networks
    • doi: 10.1038/35075138
    • Jeong, H., Mason, S., Barabasi, A., and Oltvai, Z. (2001). Lethality and centrality in protein networks. Nature 411, 41-42. doi: 10.1038/35075138.
    • (2001) Nature , vol.411 , pp. 41-42
    • Jeong, H.1    Mason, S.2    Barabasi, A.3    Oltvai, Z.4
  • 34
    • 84876881311 scopus 로고    scopus 로고
    • Mibefradil, a novel therapy for glioblastoma multiforme: cell cycle synchronization and interlaced therapy in a murine model
    • doi: 10.1007/s11060-012-0995-0
    • Keir, S., Friedman, H., Reardon, D., Bigner, D., and Gray, L. (2013). Mibefradil, a novel therapy for glioblastoma multiforme: cell cycle synchronization and interlaced therapy in a murine model. J. Neurooncol. 111, 97-102. doi: 10.1007/s11060-012-0995-0.
    • (2013) J. Neurooncol. , vol.111 , pp. 97-102
    • Keir, S.1    Friedman, H.2    Reardon, D.3    Bigner, D.4    Gray, L.5
  • 35
    • 78651287426 scopus 로고    scopus 로고
    • DrugBank 3.0: a comprehensive resource for 'omics' research on drugs
    • doi: 10.1093/nar/gkq1126
    • Knox, C., Law, V., Jewison, T., Liu, P., Ly, S., Frolkis, A., et al. (2011). DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. Nucleic Acids Res. 39, D1035-D1041. doi: 10.1093/nar/gkq1126.
    • (2011) Nucleic Acids Res. , vol.39
    • Knox, C.1    Law, V.2    Jewison, T.3    Liu, P.4    Ly, S.5    Frolkis, A.6
  • 36
    • 78650845707 scopus 로고    scopus 로고
    • G protein-coupled receptors: novel targets for drug discovery in cancer
    • doi: 10.1038/nrd3320
    • Lappano, R., and Maggiolini, M. (2011). G protein-coupled receptors: novel targets for drug discovery in cancer. Nat. Rev. Drug. Discov. 10, 47-60. doi: 10.1038/nrd3320.
    • (2011) Nat. Rev. Drug. Discov. , vol.10 , pp. 47-60
    • Lappano, R.1    Maggiolini, M.2
  • 38
    • 84865100609 scopus 로고    scopus 로고
    • The zinc finger gene ZIC2 has features of an oncogene and its overexpression correlates strongly with the clinical course of epithelial ovarian cancer
    • doi: 10.1158/1078-0432.CCR-12-0037
    • Marchini, S., Poynor, E., Barakat, R., Clivio, L., Cinquini, M., Fruscio, R., et al. (2012). The zinc finger gene ZIC2 has features of an oncogene and its overexpression correlates strongly with the clinical course of epithelial ovarian cancer. Clin. Cancer Res. 18, 4313-4324. doi: 10.1158/1078-0432.CCR-12-0037.
    • (2012) Clin. Cancer Res. , vol.18 , pp. 4313-4324
    • Marchini, S.1    Poynor, E.2    Barakat, R.3    Clivio, L.4    Cinquini, M.5    Fruscio, R.6
  • 39
    • 36248989626 scopus 로고    scopus 로고
    • Theory and limitations of genetic network inference from microarray data
    • doi: 10.1196/annals.1407.019
    • Margolin, A., and Califano, A. (2007). Theory and limitations of genetic network inference from microarray data. Ann. N.Y. Acad. Sci. 1115, 51-72. doi: 10.1196/annals.1407.019.
    • (2007) Ann. N.Y. Acad. Sci. , vol.1115 , pp. 51-72
    • Margolin, A.1    Califano, A.2
  • 40
    • 33947305781 scopus 로고    scopus 로고
    • ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • doi: 10.1186/1471-2105-7-S1-S7
    • Margolin, A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R., et al. (2006). ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(Suppl. 1):S7. doi: 10.1186/1471-2105-7-S1-S7.
    • (2006) BMC Bioinformatics , vol.7 , Issue.SUPPL. 1
    • Margolin, A.1    Nemenman, I.2    Basso, K.3    Wiggins, C.4    Stolovitzky, G.5    Dalla Favera, R.6
  • 41
    • 0037012880 scopus 로고    scopus 로고
    • Specificity and stability in topology of protein networks
    • doi: 10.1126/science.1065103
    • Maslov, S., and Sneppen, K. (2002). Specificity and stability in topology of protein networks. Science 296, 910-913. doi: 10.1126/science.1065103.
    • (2002) Science , vol.296 , pp. 910-913
    • Maslov, S.1    Sneppen, K.2
  • 42
    • 36248999573 scopus 로고    scopus 로고
    • Information-theoretic inference of large transcriptional regulatory networks
    • doi: 10.1155/2007/79879
    • Meyer, P., Kontos, K., and Bontempi, G. (2007). Information-theoretic inference of large transcriptional regulatory networks. EURASIP J. Bioinform. Syst. Biol. 2007:79879. doi: 10.1155/2007/79879.
    • (2007) EURASIP J. Bioinform. Syst. Biol. , vol.2007 , pp. 79879
    • Meyer, P.1    Kontos, K.2    Bontempi, G.3
  • 43
    • 18744389789 scopus 로고    scopus 로고
    • Assortative mixing in networks
    • doi: 10.1103/PhysRevLett.89.208701
    • Newman, M. (2002). Assortative mixing in networks. Phys. Rev. Lett. 89:208701. doi: 10.1103/PhysRevLett.89.208701.
    • (2002) Phys. Rev. Lett. , vol.89 , pp. 208701
    • Newman, M.1
  • 45
    • 59849099039 scopus 로고    scopus 로고
    • On the impact of entropy estimator in transcriptional regulatory network inference
    • doi: 10.1155/2009/308959
    • Olsen, C., Meyer, P., and Bontempi, G. (2009). On the impact of entropy estimator in transcriptional regulatory network inference. EURASIP J. Bioinform. Syst. Biol. 2009:308959. doi: 10.1155/2009/308959.
    • (2009) EURASIP J. Bioinform. Syst. Biol. , vol.2009 , pp. 308959
    • Olsen, C.1    Meyer, P.2    Bontempi, G.3
  • 46
    • 54949127160 scopus 로고    scopus 로고
    • iRefIndex: a consolidated protein interaction database with provenance
    • doi: 10.1186/1471-2105-9-405
    • Razick, S., Magklaras, G., and Donaldson, I. (2008). iRefIndex: a consolidated protein interaction database with provenance. BMC Bioinformatics 9:405. doi: 10.1186/1471-2105-9-405.
    • (2008) BMC Bioinformatics , vol.9 , pp. 405
    • Razick, S.1    Magklaras, G.2    Donaldson, I.3
  • 47
    • 79961200389 scopus 로고    scopus 로고
    • GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods
    • doi: 10.1093/bioinformatics/btr373
    • Schaffter, T., Marbach, D., and Floreano, D. (2011). GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27, 2263-2270. doi: 10.1093/bioinformatics/btr373.
    • (2011) Bioinformatics , vol.27 , pp. 2263-2270
    • Schaffter, T.1    Marbach, D.2    Floreano, D.3
  • 48
    • 0031972149 scopus 로고    scopus 로고
    • In vitro testing of calcium channel blockers and cytotoxic chemotherapy in B-cell low-grade non-Hodgkin's lymphoma
    • doi: 10.1038/bjc.1998.262
    • Shamash, J., Salam, A., Davies, D., Williams, A., Joel, S., and Lister, T. (1998). In vitro testing of calcium channel blockers and cytotoxic chemotherapy in B-cell low-grade non-Hodgkin's lymphoma. Br. J. Cancer. 77, 1598-1603. doi: 10.1038/bjc.1998.262.
    • (1998) Br. J. Cancer. , vol.77 , pp. 1598-1603
    • Shamash, J.1    Salam, A.2    Davies, D.3    Williams, A.4    Joel, S.5    Lister, T.6
  • 50
    • 0022345443 scopus 로고
    • The calcium channel blocker verapamil and cancer chemotherapy
    • doi: 10.1016/0143-4160(85)90021-1
    • Simpson, W. (1985). The calcium channel blocker verapamil and cancer chemotherapy. Cell Calcium 6, 449-467. doi: 10.1016/0143-4160(85)90021-1.
    • (1985) Cell Calcium , vol.6 , pp. 449-467
    • Simpson, W.1
  • 51
    • 77955564204 scopus 로고    scopus 로고
    • Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels
    • doi: 10.1007/s00424-010-0800-x
    • Striessnig, J., Bolz, H., and Koschak, A. (2010). Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels. Pflugers Arch. 460, 361-374. doi: 10.1007/s00424-010-0800-x.
    • (2010) Pflugers Arch. , vol.460 , pp. 361-374
    • Striessnig, J.1    Bolz, H.2    Koschak, A.3
  • 52
    • 33144486498 scopus 로고    scopus 로고
    • SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms
    • doi: 10.1186/1471-2105-7-43
    • Van den Bulcke, T., Van Leemput, K., Naudts, B., van Remortel, P., Ma, H., Verschoren, A., et al. (2006). SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC Bioinformatics 7:43. doi: 10.1186/1471-2105-7-43.
    • (2006) BMC Bioinformatics , vol.7 , pp. 43
    • Van den Bulcke, T.1    Van Leemput, K.2    Naudts, B.3    van Remortel, P.4    Ma, H.5    Verschoren, A.6
  • 53
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of 'small-world' networks
    • doi: 10.1038/30918.
    • Watts, D., and Strogatz, S. (1998). Collective dynamics of 'small-world' networks. Nature 393. 440-442. doi: 10.1038/30918.
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.1    Strogatz, S.2
  • 54
    • 33749825955 scopus 로고    scopus 로고
    • Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks
    • doi: 10.1093/bioinformatics/btl391
    • Werhli, A., Grzegorczyk, M., and Husmeier, D. (2006). Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks. Bioinformatics 22, 2523-2531. doi: 10.1093/bioinformatics/btl391.
    • (2006) Bioinformatics , vol.22 , pp. 2523-2531
    • Werhli, A.1    Grzegorczyk, M.2    Husmeier, D.3
  • 55
    • 22044448669 scopus 로고    scopus 로고
    • Sparse graphical gaussian modeling of the isoprenoid gene network in arabidopsis thaliana
    • doi: 10.1186/gb-2004-5-11-r92
    • Wille, A., Zimmermann, P., Vranova, E., Furholz, A., Laule, O., Bleuler, S., et al. (2004). Sparse graphical gaussian modeling of the isoprenoid gene network in arabidopsis thaliana. Genome Biol. 5:R92. doi: 10.1186/gb-2004-5-11-r92.
    • (2004) Genome Biol. , vol.5
    • Wille, A.1    Zimmermann, P.2    Vranova, E.3    Furholz, A.4    Laule, O.5    Bleuler, S.6
  • 56
    • 77749264188 scopus 로고    scopus 로고
    • Improved reconstruction of in silico gene regulatory networks by integrating knockout and perturbation data
    • doi: 10.1371/journal.pone.0008121
    • Yip, K. Y., Alexander, R. P., Yan, K.-K., and Gerstein, M. (2010). Improved reconstruction of in silico gene regulatory networks by integrating knockout and perturbation data. PLoS ONE 5:e8121. doi: 10.1371/journal.pone.0008121.
    • (2010) PLoS ONE , vol.5
    • Yip, K.Y.1    Alexander, R.P.2    Yan, K.-K.3    Gerstein, M.4
  • 57
    • 84924733385 scopus 로고    scopus 로고
    • Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511755392.
    • Young, G. A., and Smith, R. L. (2005). Essentials of Statistical Inference. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511755392.
    • (2005) Essentials of Statistical Inference
    • Young, G.A.1    Smith, R.L.2
  • 59
    • 84855160951 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from gene expression data by PC-algorithm based on conditional mutual information
    • doi: 10.1093/bioinformatics/btr626
    • Zhang, X., Zhao, X.-M., He, K., Lu, L., Cao, Y., Liu, J., et al. (2011). Inferring gene regulatory networks from gene expression data by PC-algorithm based on conditional mutual information. Bioinformatics 28, 98-104. doi: 10.1093/bioinformatics/btr626.
    • (2011) Bioinformatics , vol.28 , pp. 98-104
    • Zhang, X.1    Zhao, X.-M.2    He, K.3    Lu, L.4    Cao, Y.5    Liu, J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.