메뉴 건너뛰기




Volumn 140, Issue 8, 2014, Pages

Application of a combination model based on wavelet transform and KPLS-ARMA for urban annual water demand forecasting

Author keywords

Annual water demand; Autoregressive and moving average model (ARMA); Combination forecasting; Kernel partial least squares; Nonstationary time series; Wavelet transform

Indexed keywords

ARTIFICIAL INTELLIGENCE; FORECASTING; GAUSSIAN NOISE (ELECTRONIC); LEAST SQUARES APPROXIMATIONS; STATISTICAL MECHANICS; WAVELET TRANSFORMS;

EID: 84928648158     PISSN: 07339496     EISSN: 19435452     Source Type: Journal    
DOI: 10.1061/(ASCE)WR.1943-5452.0000397     Document Type: Article
Times cited : (15)

References (44)
  • 1
    • 84856246099 scopus 로고    scopus 로고
    • 'Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada'
    • Adamowski, J., Chan, H. F., Prasher, S. O., Ozga-Zielinski, B., and Sliusarieva, A. (2012). "Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada". Water Resour. Res., 48(1), 1-14.
    • (2012) Water Resour. Res. , vol.48 , Issue.1 , pp. 1-14
    • Adamowski, J.1    Chan, H.F.2    Prasher, S.O.3    Ozga-Zielinski, B.4    Sliusarieva, A.5
  • 2
    • 84857159811 scopus 로고    scopus 로고
    • 'Hybrid fuzzy regression-artificial neural network for improvement of short-term water consumption estimation and forecasting in uncertain and complex environments: Case of a large metropolitan city'
    • Azadeh, A., Neshat, N., and Hamidipour, H. (2012). "Hybrid fuzzy regression-artificial neural network for improvement of short-term water consumption estimation and forecasting in uncertain and complex environments: Case of a large metropolitan city". J. Water Resour. Plann. Manage. 71-75. 10.1061/(ASCE)WR.1943-5452.0000152.
    • (2012) J. Water Resour. Plann. Manage. , pp. 71-75
    • Azadeh, A.1    Neshat, N.2    Hamidipour, H.3
  • 3
    • 84925587893 scopus 로고    scopus 로고
    • 'Identifying residential water end-uses underpinning peak day and peak hour demand'
    • 04014008
    • Beal, C., and Stewart, R. (2013). "Identifying residential water end-uses underpinning peak day and peak hour demand". J. Water Resour. Plann. Manage. 04014008. 10.1061/(ASCE)WR.1943-5452.0000357.
    • (2013) J. Water Resour. Plann. Manage.
    • Beal, C.1    Stewart, R.2
  • 6
    • 33750485147 scopus 로고
    • 'Formal neural network as an adaptive model for water demand'
    • IEEE Press, New Jersey
    • Canu, S., Sobral, R., and Lengelle, R. (1990). "Formal neural network as an adaptive model for water demand". Proc., Int. Conf. on Neural Network, IEEE Press, New Jersey, 131-136.
    • (1990) Proc., Int. Conf. on Neural Network , pp. 131-136
    • Canu, S.1    Sobral, R.2    Lengelle, R.3
  • 7
    • 84929176173 scopus 로고    scopus 로고
    • 'Water demand forecasting based on multi-scales analysis and neural network'
    • Chang, J. X., Yu, X. J., Huang, Q., and Liu, Z. (2008). "Water demand forecasting based on multi-scales analysis and neural network". Comput. Eng. Appl., 44(17), 219-221.
    • (2008) Comput. Eng. Appl. , vol.44 , Issue.17 , pp. 219-221
    • Chang, J.X.1    Yu, X.J.2    Huang, Q.3    Liu, Z.4
  • 8
    • 84906909341 scopus 로고    scopus 로고
    • 'Comparative analysis of supervised and unsupervised discretization techniques'
    • Dash, R., Paramguru, R. L., and Dash, R. (2011). "Comparative analysis of supervised and unsupervised discretization techniques". Int. J. Adv. Sci. Technol., 2(3), 29-37.
    • (2011) Int. J. Adv. Sci. Technol. , vol.2 , Issue.3 , pp. 29-37
    • Dash, R.1    Paramguru, R.L.2    Dash, R.3
  • 9
    • 84892846694 scopus 로고    scopus 로고
    • 'Urban water demand forecasting: A review of methods and models'
    • Donkor, E., Mazzuchi, T., Soyer, R., and Roberson, J. (2014). "Urban water demand forecasting: A review of methods and models". J. Water Resour. Plann. Manage. 146-159. 10.1061/(ASCE)WR.1943-5452.0000314.
    • (2014) J. Water Resour. Plann. Manage. , pp. 146-159
    • Donkor, E.1    Mazzuchi, T.2    Soyer, R.3    Roberson, J.4
  • 10
    • 84929177311 scopus 로고    scopus 로고
    • 'Application of partial least squares method to forecast the urban water demand quantity'
    • Du, F. X., and Xu, G. (2008). "Application of partial least squares method to forecast the urban water demand quantity". Water Power, 34(6), 20-23.
    • (2008) Water Power , vol.34 , Issue.6 , pp. 20-23
    • Du, F.X.1    Xu, G.2
  • 11
    • 0037382208 scopus 로고    scopus 로고
    • 'Evaluation of simple performance measures for tuning SVM hyperparameters'
    • Duan, K., Keerthi, S. S., and Poo, A. N. (2003). "Evaluation of simple performance measures for tuning SVM hyperparameters". Neurocomputing, 51, 41-59.
    • (2003) Neurocomputing , vol.51 , pp. 41-59
    • Duan, K.1    Keerthi, S.S.2    Poo, A.N.3
  • 12
    • 39549111033 scopus 로고    scopus 로고
    • 'Urban water demand forecasting with a dynamic artificial neural network model'
    • Ghiassi, M., David, K., and Saidane, H. (2008). "Urban water demand forecasting with a dynamic artificial neural network model". J. Water Resour. Plann. Manage. 138-146. 10.1061/(ASCE)0733-9496(2008)134:2(138).
    • (2008) J. Water Resour. Plann. Manage. , pp. 138-146
    • Ghiassi, M.1    David, K.2    Saidane, H.3
  • 13
    • 0035494446 scopus 로고    scopus 로고
    • 'Short-Term water demand forecast modelling at IIT Kanpur using artificial neural networks'
    • Jain, A., Varshney, A. K., and Joshi, U. C. (2001). "Short-Term water demand forecast modelling at IIT Kanpur using artificial neural networks". Water Resour. Manage., 15(5), 299-321.
    • (2001) Water Resour. Manage. , vol.15 , Issue.5 , pp. 299-321
    • Jain, A.1    Varshney, A.K.2    Joshi, U.C.3
  • 14
    • 34248167086 scopus 로고    scopus 로고
    • 'Application of genetic algorithm-kernel partial least square as a novel nonlinear feature selection method: Activity of carbonic anhydrase II inhibitors'
    • Jalali-Heravi, M., and Kyani, A. (2007). "Application of genetic algorithm-kernel partial least square as a novel nonlinear feature selection method: Activity of carbonic anhydrase II inhibitors". Eur. J. Med. Chem., 42(5), 649-659.
    • (2007) Eur. J. Med. Chem. , vol.42 , Issue.5 , pp. 649-659
    • Jalali-Heravi, M.1    Kyani, A.2
  • 15
    • 84929146626 scopus 로고    scopus 로고
    • 'Forecasting water demand for agricultural, industrial and domestic use in Libya'
    • Lawgali, F. F. (2008). "Forecasting water demand for agricultural, industrial and domestic use in Libya". Int. Rev. Bus. Res. Pap., 4(5), 231-248.
    • (2008) Int. Rev. Bus. Res. Pap. , vol.4 , Issue.5 , pp. 231-248
    • Lawgali, F.F.1
  • 16
    • 0036386786 scopus 로고    scopus 로고
    • 'Comparison of two different approaches of sensitivity analysis'
    • Lenhart, T., Eckhardt, K., Fohrer, N., and Frede, H.-G. (2002). "Comparison of two different approaches of sensitivity analysis". Phys. Chem. Earth , 27(9-10), 645-654.
    • (2002) Phys. Chem. Earth , vol.27 , Issue.9-10 , pp. 645-654
    • Lenhart, T.1    Eckhardt, K.2    Fohrer, N.3    Frede, H.-G.4
  • 17
    • 0028949497 scopus 로고
    • 'Pattern recognition, reflection from a chemometric point of view'
    • Lewi, P. J. (1995). "Pattern recognition, reflection from a chemometric point of view". Chemom. Intell. Lab. Syst., 28(1), 23-33.
    • (1995) Chemom. Intell. Lab. Syst. , vol.28 , Issue.1 , pp. 23-33
    • Lewi, P.J.1
  • 19
    • 84876698394 scopus 로고    scopus 로고
    • 'Principal factor analysis for forecasting diurnal water-demand pattern using combined rough-set and fuzzy-clustering technique'
    • Liu, J. Q., Cheng, W. P., and Zhang, T. Q. (2013). "Principal factor analysis for forecasting diurnal water-demand pattern using combined rough-set and fuzzy-clustering technique". J. Water Resour. Plann. Manage. 23-33. 10.1061/(ASCE)WR.1943-5452.0000223.
    • (2013) J. Water Resour. Plann. Manage. , pp. 23-33
    • Liu, J.Q.1    Cheng, W.P.2    Zhang, T.Q.3
  • 20
    • 70249116446 scopus 로고    scopus 로고
    • 'Chaotic prediction model for runoff using wavelet de-noising'
    • Liu, L., Zhou, J. Z., Li, Y. H., and Zhang, Y. C. (2009). "Chaotic prediction model for runoff using wavelet de-noising". J. Huazhong Univ. of Sci. Tech., 37(7), 86-89.
    • (2009) J. Huazhong Univ. of Sci. Tech. , vol.37 , Issue.7 , pp. 86-89
    • Liu, L.1    Zhou, J.Z.2    Li, Y.H.3    Zhang, Y.C.4
  • 21
    • 84887361973 scopus 로고    scopus 로고
    • 'Study on the imbalance of shipping demand and supply of inland water transportation of Yangtze River'
    • ASCE Press, Reston, Virginia
    • Luo, X. L., and Yang, J. Q. (2013). "Study on the imbalance of shipping demand and supply of inland water transportation of Yangtze River". Proc., ICTIS 2013, ASCE Press, Reston, Virginia, 2211-2218.
    • (2013) Proc., ICTIS 2013 , pp. 2211-2218
    • Luo, X.L.1    Yang, J.Q.2
  • 22
    • 0021614485 scopus 로고
    • 'Cascade model of monthly municipal water use'
    • Maidment, D. R., and Parzen, E. (1984). "Cascade model of monthly municipal water use". Water Resour. Res., 20(1), 15-23.
    • (1984) Water Resour. Res. , vol.20 , Issue.1 , pp. 15-23
    • Maidment, D.R.1    Parzen, E.2
  • 23
    • 0021196546 scopus 로고
    • 'Time patterns of water use in six Texas cities'
    • Maidment, D. R., and Parzen, E. (1984). "Time patterns of water use in six Texas cities". J. Water Resour. Plann. Manage. 90-106. 10.1061/(ASCE)0733-9496(1984)110:1(90).
    • (1984) J. Water Resour. Plann. Manage. , pp. 90-106
    • Maidment, D.R.1    Parzen, E.2
  • 26
    • 40949148638 scopus 로고    scopus 로고
    • 'Artificial neural networks and support vector machines for water demand time series forecasting'
    • Man and Cybernetics, IEEE Press, New Jersey
    • Msiza, I. S., Nelwamondo, F. V., and Marwala, T. (2007). "Artificial neural networks and support vector machines for water demand time series forecasting". Proc., Int. Conf. on Systems, Man and Cybernetics, IEEE Press, New Jersey, 638-643.
    • (2007) Proc., Int. Conf. on Systems , pp. 638-643
    • Msiza, I.S.1    Nelwamondo, F.V.2    Marwala, T.3
  • 27
    • 84860795609 scopus 로고    scopus 로고
    • 'Hybrid water demand forecasting model associating artificial neural network with Fourier series'
    • Odan, F. K., and Reis, L. F. (2012). "Hybrid water demand forecasting model associating artificial neural network with Fourier series". J. Water Resour. Plann. Manage. 245-256. 10.1061/(ASCE)WR.1943-5452.0000177.
    • (2012) J. Water Resour. Plann. Manage. , pp. 245-256
    • Odan, F.K.1    Reis, L.F.2
  • 28
    • 77951018423 scopus 로고    scopus 로고
    • 'Seasonal residential water demand forecasting for census tracts'
    • Polebitski, A., and Palmer, R. (2010). "Seasonal residential water demand forecasting for census tracts". J. Water Resour. Plann. Manage. 27-36. 10.1061/(ASCE)WR.1943-5452.0000003.
    • (2010) J. Water Resour. Plann. Manage. , pp. 27-36
    • Polebitski, A.1    Palmer, R.2
  • 29
    • 84929164408 scopus 로고    scopus 로고
    • 'Water demand prediction in northern Gulf economic zone of Guangxi province based on system dynamics'
    • Qin, J. X., Wang, L., Huang, G. R., and Fan, Q. F. (2012). "Water demand prediction in northern Gulf economic zone of Guangxi province based on system dynamics". Water Resour. Power, 30(2), 28-31.
    • (2012) Water Resour. Power , vol.30 , Issue.2 , pp. 28-31
    • Qin, J.X.1    Wang, L.2    Huang, G.R.3    Fan, Q.F.4
  • 30
    • 77958061653 scopus 로고    scopus 로고
    • Quantitative Micro software, LLC, Irvine CA.
    • Quantitative Micro software, LLC. (2007). Eviews 6 user's guide, Quantitative Micro software, LLC, Irvine CA.
    • (2007) Eviews 6 user's guide
  • 31
    • 0038259120 scopus 로고    scopus 로고
    • 'Kernel partial least squares regression in reproducing kernel Hilbert Space'
    • Rosipal, R., and Trejo, L. J. (2001). "Kernel partial least squares regression in reproducing kernel Hilbert Space". J. Mach. Learn. Res., 2(12), 97-123.
    • (2001) J. Mach. Learn. Res. , vol.2 , Issue.12 , pp. 97-123
    • Rosipal, R.1    Trejo, L.J.2
  • 32
    • 19044371729 scopus 로고
    • 'Testing for unit roots in autoregressive-moving average models of unknown order'
    • Said, E. S., and Dickey, D. A. (1984). "Testing for unit roots in autoregressive-moving average models of unknown order". Biometrika, 71(3), 599-607.
    • (1984) Biometrika , vol.71 , Issue.3 , pp. 599-607
    • Said, E.S.1    Dickey, D.A.2
  • 34
    • 78149408167 scopus 로고    scopus 로고
    • 'Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach'
    • Tiwari, M. K., and Chatterjee, C. (2010). "Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach". J. Hydrol., 394(3-4), 458-470.
    • (2010) J. Hydrol. , vol.394 , Issue.3-4 , pp. 458-470
    • Tiwari, M.K.1    Chatterjee, C.2
  • 35
    • 79959591402 scopus 로고    scopus 로고
    • 'Application of a combined model based on wavelet analysis for predicting crop water requirement'
    • Tong, C. F., Shi, H. B., Bao, X. Q., and Li, H. P. (2011). "Application of a combined model based on wavelet analysis for predicting crop water requirement". T. Chin. Soc. Agr. Eng., 27(5), 93-98.
    • (2011) T. Chin. Soc. Agr. Eng. , vol.27 , Issue.5 , pp. 93-98
    • Tong, C.F.1    Shi, H.B.2    Bao, X.Q.3    Li, H.P.4
  • 36
    • 35748943218 scopus 로고    scopus 로고
    • 'A discretization algorithm based on class-attribute contingency coefficient'
    • Tsai, C. J., Lee, C. I., and Yang, W. P. (2008). "A discretization algorithm based on class-attribute contingency coefficient". Inf. Sci., 178(3), 714-731.
    • (2008) Inf. Sci. , vol.178 , Issue.3 , pp. 714-731
    • Tsai, C.J.1    Lee, C.I.2    Yang, W.P.3
  • 40
    • 76549132623 scopus 로고    scopus 로고
    • 'Complex process quality prediction using modified kernel partial least squares'
    • Zhang, Y. W., Teng, Y. D., and Zhang, Y. (2010). "Complex process quality prediction using modified kernel partial least squares". Chem. Eng. Sci., 65(6), 2153-2158.
    • (2010) Chem. Eng. Sci. , vol.65 , Issue.6 , pp. 2153-2158
    • Zhang, Y.W.1    Teng, Y.D.2    Zhang, Y.3
  • 41
  • 42
    • 73949141455 scopus 로고    scopus 로고
    • 'A study on water resources consumption by principal component analysis in Qingtongxia irrigation areas of Yinchuan Plain, China'
    • Zhou, D., Zhang, R. Q., Liu, L. M., Gao, L. L., and Cai, S. M. (2009). "A study on water resources consumption by principal component analysis in Qingtongxia irrigation areas of Yinchuan Plain, China". J. Food Agric. Environ., 7(3-4), 734-738.
    • (2009) J. Food Agric. Environ. , vol.7 , Issue.3-4 , pp. 734-738
    • Zhou, D.1    Zhang, R.Q.2    Liu, L.M.3    Gao, L.L.4    Cai, S.M.5
  • 43
    • 38149027113 scopus 로고    scopus 로고
    • 'The research of monthly discharge predictor- corrector model based on wavelet decomposition'
    • Zhou, H. C., Peng, Y., and Liang, G. H. (2008). "The research of monthly discharge predictor- corrector model based on wavelet decomposition". Water Resour. Manage., 22(2), 217-227.
    • (2008) Water Resour. Manage. , vol.22 , Issue.2 , pp. 217-227
    • Zhou, H.C.1    Peng, Y.2    Liang, G.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.