메뉴 건너뛰기




Volumn 138, Issue 1, 2011, Pages 71-75

Hybrid Fuzzy Regression-Artificial Neural Network for Improvement of Short-Term Water Consumption Estimation and Forecasting in Uncertain and Complex Environments: Case of a Large Metropolitan City

Author keywords

Artificial neural network (ANN); Complexity; Forecasting; Fuzzy linear regression (FLR); Optimization; Uncertainty; Water consumption

Indexed keywords

ARTIFICIAL NEURAL NETWORK; COMPLEXITY; FUZZY LINEAR REGRESSION; UNCERTAINTY; WATER CONSUMPTION;

EID: 84857159811     PISSN: 07339496     EISSN: None     Source Type: Journal    
DOI: 10.1061/(ASCE)WR.1943-5452.0000152     Document Type: Article
Times cited : (27)

References (26)
  • 1
    • 27744524615 scopus 로고    scopus 로고
    • Water consumption prediction of Istanbul city by using fuzzy logic approach
    • WRMAEJ, 0920-4741, 10.1007/s11269-005-7371-1.
    • Altunkaynak A. Özger M. Çakmakci M. Water consumption prediction of Istanbul city by using fuzzy logic approach. Water Resour. Manage. 2005, 19(5):641-654. WRMAEJ, 0920-4741, 10.1007/s11269-005-7371-1.
    • (2005) Water Resour. Manage. , vol.19 , Issue.5 , pp. 641-654
    • Altunkaynak, A.1    Özger, M.2    Çakmakci, M.3
  • 2
    • 18344406127 scopus 로고    scopus 로고
    • Applying knowledge discovery to predict water-supply consumption
    • IEEXE7, 0885-9000, 10.1109/64.608199.
    • An A. Chan C. Shan N. Cercone N. Ziarko W. Applying knowledge discovery to predict water-supply consumption. IEEE Expert 1997, 12(4):72-78. IEEXE7, 0885-9000, 10.1109/64.608199.
    • (1997) IEEE Expert , vol.12 , Issue.4 , pp. 72-78
    • An, A.1    Chan, C.2    Shan, N.3    Cercone, N.4    Ziarko, W.5
  • 3
    • 31344433365 scopus 로고    scopus 로고
    • Time series prediction of water consumption using neuro-fuzzy (ANFIS) approach
    • International Water Association (IWA) London.
    • Atsalakis G. Ucenic C. Time series prediction of water consumption using neuro-fuzzy (ANFIS) approach. IWA Int. Conf. on Water Econ., Stat. and Financ. 2005 International Water Association (IWA) London.
    • (2005) IWA Int. Conf. on Water Econ., Stat. and Financ.
    • Atsalakis, G.1    Ucenic, C.2
  • 4
    • 44649152880 scopus 로고    scopus 로고
    • A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran
    • ENPYAC, 0301-4215, 10.1016/j.enpol.2008.02.035, and (b) .
    • Azadeh A. Ghaderi S.F. Sohrabkhani S. A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran. Energy Policy 2008, 36(7):2637-2644. ENPYAC, 0301-4215, 10.1016/j.enpol.2008.02.035, and (b).
    • (2008) Energy Policy , vol.36 , Issue.7 , pp. 2637-2644
    • Azadeh, A.1    Ghaderi, S.F.2    Sohrabkhani, S.3
  • 6
    • 39549111033 scopus 로고    scopus 로고
    • Urban water demand forecasting with a dynamic artificial neural network model
    • JWRMD5, 0733-9496, 10.1061/(ASCE)0733-9496(2008)134:2(138).
    • Ghiassi M. Zimbra D.K. Saidane H. Urban water demand forecasting with dynamic artificial neural network model. J. Water Resour. Plann. Manage. 2008, 134(2):138-146. JWRMD5, 0733-9496, 10.1061/(ASCE)0733-9496(2008)134:2(138).
    • (2008) J. Water Resour. Plann. Manage. , vol.134 , Issue.2 , pp. 138-146
    • Ghiassi, M.1    Zimbra, D.K.2    Saidane, H.3
  • 8
    • 13544267455 scopus 로고    scopus 로고
    • A simple method for computation of fuzzy linear regression
    • EJORDT, 0377-2217, 10.1016/j.ejor.2004.01.039.
    • Hojati M. Bector C.R. Smimou K. simple method for computation of fuzzy linear regression. Eur. J. Oper. Res. 2005, 166(1):172-184. EJORDT, 0377-2217, 10.1016/j.ejor.2004.01.039.
    • (2005) Eur. J. Oper. Res. , vol.166 , Issue.1 , pp. 172-184
    • Hojati, M.1    Bector, C.R.2    Smimou, K.3
  • 9
    • 0041589564 scopus 로고    scopus 로고
    • A note on fuzzy regression model with fuzzy input and output data for manpower forecasting
    • FSSYD8, 0165-0114, 10.1016/S0165-0114(03)00090-3.
    • Hong D.H. Yi H.C. note on fuzzy regression model with fuzzy input and output data for manpower forecasting. Fuzzy Set. Syst. 2003, 138(2):301-305. FSSYD8, 0165-0114, 10.1016/S0165-0114(03)00090-3.
    • (2003) Fuzzy Set. Syst. , vol.138 , Issue.2 , pp. 301-305
    • Hong, D.H.1    Yi, H.C.2
  • 10
    • 0036384659 scopus 로고    scopus 로고
    • Application of short-term water demand prediction model to Seoul
    • WSTED4, 0273-1223.
    • Joo C.N. Koo J.Y. Yu M.J. Application of short-term water demand prediction model to Seoul. J. Water Sci. Technol. 2002, 46(6-7):255-261. WSTED4, 0273-1223.
    • (2002) J. Water Sci. Technol. , vol.46 , Issue.6-7 , pp. 255-261
    • Joo, C.N.1    Koo, J.Y.2    Yu, M.J.3
  • 11
    • 38249016076 scopus 로고
    • On the effect of linear data transformations in possibilistic fuzzy linear regression
    • FSSYD8, 0165-0114, 10.1016/0165-0114(92)90117-M, .
    • Jozsef S. On the effect of linear data transformations in possibilistic fuzzy linear regression. Fuzzy Set. Syst. 1992, 45(2):185-188. FSSYD8, 0165-0114, 10.1016/0165-0114(92)90117-M.
    • (1992) Fuzzy Set. Syst. , vol.45 , Issue.2 , pp. 185-188
    • Jozsef, S.1
  • 13
    • 84857156734 scopus 로고    scopus 로고
    • Short-term water consumption forecast in municipal water supply networks based on wavelet decomposition
    • Liu H.B. Zhang H.W. Short-term water consumption forecast in municipal water supply networks based on wavelet decomposition. China Water Wastewater 2006, 17.
    • (2006) China Water Wastewater , vol.17
    • Liu, H.B.1    Zhang, H.W.2
  • 15
    • 70449426419 scopus 로고    scopus 로고
    • The usage of artificial neural networks in the classification and forecast of potable water consumption
    • Atlanta, GA.
    • Oliveira D.M. Oliveira A.L. Neri Nobre C. Zarate L.E. The usage of artificial neural networks in the classification and forecast of potable water consumption. Int. Jt. Conf. on Neural Netw. 2009, 2331-2338 Atlanta, GA.
    • (2009) Int. Jt. Conf. on Neural Netw. , pp. 2331-2338
    • Oliveira, D.M.1    Oliveira, A.L.2    Neri Nobre, C.3    Zarate, L.E.4
  • 16
    • 0034009146 scopus 로고    scopus 로고
    • Multi-objective fuzzy regression: A general framework
    • CMORAP, 0305-0548, 10.1016/S0305-0548(99)00110-0.
    • Ozelkan E.C. Duckstein L. Multi-objective fuzzy regression: general framework. Comput. Oper. Res. 2000, 27(7-8):635-652. CMORAP, 0305-0548, 10.1016/S0305-0548(99)00110-0.
    • (2000) Comput. Oper. Res. , vol.27 , Issue.7-8 , pp. 635-652
    • Ozelkan, E.C.1    Duckstein, L.2
  • 17
    • 0028407151 scopus 로고
    • Fuzzy linear regression with fuzzy intervals
    • FSSYD8, 0165-0114, 10.1016/0165-0114(94)90144-9, .
    • Peters G. Fuzzy linear regression with fuzzy intervals. Fuzzy Set. Syst. 1994, 63(1):45-55. FSSYD8, 0165-0114, 10.1016/0165-0114(94)90144-9.
    • (1994) Fuzzy Set. Syst. , vol.63 , Issue.1 , pp. 45-55
    • Peters, G.1
  • 18
    • 0347506040 scopus 로고    scopus 로고
    • Demand forecasting for irrigation water distribution systems
    • JIDEDH, 0733-9437, 10.1061/(ASCE)0733-9437(2003)129:6(422).
    • Pulido-Calvo I. Roldan J. Lopez-Luque R. Gutierrez-Estrada J. Demand forecasting for irrigation water distribution systems. J. Irrig. Drain. Eng. 2003, 129(6):422-431. JIDEDH, 0733-9437, 10.1061/(ASCE)0733-9437(2003)129:6(422).
    • (2003) J. Irrig. Drain. Eng. , vol.129 , Issue.6 , pp. 422-431
    • Pulido-Calvo, I.1    Roldan, J.2    Lopez-Luque, R.3    Gutierrez-Estrada, J.4
  • 19
    • 0001563202 scopus 로고
    • Multi-objective fuzzy linear regression analysis for fuzzy input-output data
    • FSSYD8, 0165-0114, 10.1016/0165-0114(92)90175-4.
    • Sakawa M. Yano H. Multi-objective fuzzy linear regression analysis for fuzzy input-output data. Fuzzy Sets Syst. 1992, 47(2):173-181. FSSYD8, 0165-0114, 10.1016/0165-0114(92)90175-4.
    • (1992) Fuzzy Sets Syst. , vol.47 , Issue.2 , pp. 173-181
    • Sakawa, M.1    Yano, H.2
  • 20
    • 84857156739 scopus 로고    scopus 로고
    • Forecast of the water consumption in agriculture based on grey Markova model
    • Song Q. Forecast of the water consumption in agriculture based on grey Markova model. J. Anhui Agric. Sci. 2007, 06.
    • (2007) J. Anhui Agric. Sci. , vol.6
    • Song, Q.1
  • 22
    • 0024680971 scopus 로고
    • Possibilistic linear regression analysis for fuzzy data
    • EJORDT, 0377-2217, 10.1016/0377-2217(89)90431-1.
    • Tanaka H. Hayashi I. Watada J. Possibilistic linear regression analysis for fuzzy data. Eur. J. Oper. Res. 1989, 40(3):389-396. EJORDT, 0377-2217, 10.1016/0377-2217(89)90431-1.
    • (1989) Eur. J. Oper. Res. , vol.40 , Issue.3 , pp. 389-396
    • Tanaka, H.1    Hayashi, I.2    Watada, J.3
  • 24
    • 61349127655 scopus 로고    scopus 로고
    • Forecast model of urban daily water consumption based on particle swarm optimization
    • ZGPAFP, 1000-4602.
    • Wang L. Wang Z. Yue L. Forecast model of urban daily water consumption based on particle swarm optimization. China Water Wastewater 2007, 07. ZGPAFP, 1000-4602.
    • (2007) China Water Wastewater , vol.7
    • Wang, L.1    Wang, Z.2    Yue, L.3
  • 25
    • 4344591889 scopus 로고    scopus 로고
    • Neural network forecasting for seasonal and trend time series
    • EJORDT, 0377-2217, 10.1016/j.ejor.2003.08.037.
    • Zhang G.P. Qi M. Neural network forecasting for seasonal and trend time series. Eur. J. Oper. Res. 2005, 160(2):501-514. EJORDT, 0377-2217, 10.1016/j.ejor.2003.08.037.
    • (2005) Eur. J. Oper. Res. , vol.160 , Issue.2 , pp. 501-514
    • Zhang, G.P.1    Qi, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.