메뉴 건너뛰기




Volumn 14, Issue 1, 2015, Pages

Invertase Suc2-mediated inulin catabolism is regulated at the transcript level in Saccharomyces cerevisiae

Author keywords

Inulin; Invertase; Saccharomyces cerevisiae; Transcript level

Indexed keywords

ALCOHOL; BETA FRUCTOFURANOSIDASE; INULIN; INULINASE; INVERTASE SUC2; UNCLASSIFIED DRUG;

EID: 84928005828     PISSN: None     EISSN: 14752859     Source Type: Journal    
DOI: 10.1186/s12934-015-0243-3     Document Type: Article
Times cited : (12)

References (35)
  • 2
    • 0026138226 scopus 로고
    • Cultivation and utilization of Jerusalem artichoke for ethanol, single cell protein, and high-fructose syrup production
    • Bajpai PK, Bajpai P. Cultivation and utilization of Jerusalem artichoke for ethanol, single cell protein, and high-fructose syrup production. Enzyme Microb Technol. 1991;13:359-62.
    • (1991) Enzyme Microb Technol , vol.13 , pp. 359-362
    • Bajpai, P.K.1    Bajpai, P.2
  • 4
    • 56649088251 scopus 로고    scopus 로고
    • Ethanol fermentation with Kluyveromyces marxianus from Jerusalem artichoke grown in salina and irrigated with a mixture of seawater and freshwater
    • Yuan W, Zhao X, Ge X, Bai F. Ethanol fermentation with Kluyveromyces marxianus from Jerusalem artichoke grown in salina and irrigated with a mixture of seawater and freshwater. J Appl Microbiol. 2008;105:2076-83.
    • (2008) J Appl Microbiol , vol.105 , pp. 2076-2083
    • Yuan, W.1    Zhao, X.2    Ge, X.3    Bai, F.4
  • 5
    • 77957818533 scopus 로고    scopus 로고
    • Kluyveromyces marxianus: A yeast emerging from its sister's shadow
    • Lane MM, Morrissey JP. Kluyveromyces marxianus: A yeast emerging from its sister's shadow. Fungal Biol Rev. 2010;24:17-26.
    • (2010) Fungal Biol Rev , vol.24 , pp. 17-26
    • Lane, M.M.1    Morrissey, J.P.2
  • 6
    • 0027523491 scopus 로고
    • Production of high concentrations of ethanol from inulin by simultaneous saccharification and fermentation using Aspergillus niger and Saccharomyces cerevisiae
    • Ohta K, Hamada S, Nakamura T. Production of high concentrations of ethanol from inulin by simultaneous saccharification and fermentation using Aspergillus niger and Saccharomyces cerevisiae. Appl Environ Microbiol. 1993;59:729-33.
    • (1993) Appl Environ Microbiol , vol.59 , pp. 729-733
    • Ohta, K.1    Hamada, S.2    Nakamura, T.3
  • 7
    • 78650692578 scopus 로고    scopus 로고
    • Ethanol fermentation from Jerusalem artichoke powder using Saccharomyces cerevisiae KCCM50549 without pretreatment for inulin hydrolysis
    • Lim S-H, Ryu J-M, Lee H, Jeon JH, Sok D-E, Choi E-S. Ethanol fermentation from Jerusalem artichoke powder using Saccharomyces cerevisiae KCCM50549 without pretreatment for inulin hydrolysis. Bioresoure Technol. 2011;102:2109-11.
    • (2011) Bioresoure Technol , vol.102 , pp. 2109-2111
    • Lim, S.-H.1    Ryu, J.-M.2    Lee, H.3    Jeon, J.H.4    Sok, D.-E.5    Choi, E.-S.6
  • 8
    • 0033946526 scopus 로고    scopus 로고
    • Influence of yeast flocculation on the rate of Jerusalem artichoke extract fermentation
    • Schorr-Galindo S, Ghommidh C, Guiraud J. Influence of yeast flocculation on the rate of Jerusalem artichoke extract fermentation. Curr Microbiol. 2000;41:89-95.
    • (2000) Curr Microbiol , vol.41 , pp. 89-95
    • Schorr-Galindo, S.1    Ghommidh, C.2    Guiraud, J.3
  • 9
    • 84886291101 scopus 로고    scopus 로고
    • Improved ethanol fermentation by heterologous endoinulinase and inherent invertase from inulin by Saccharomyces cerevisiae
    • Yuan B, Wang SA, Li FL. Improved ethanol fermentation by heterologous endoinulinase and inherent invertase from inulin by Saccharomyces cerevisiae. Bioresoure Technol. 2013;139:402-5.
    • (2013) Bioresoure Technol , vol.139 , pp. 402-405
    • Yuan, B.1    Wang, S.A.2    Li, F.L.3
  • 10
    • 84871894020 scopus 로고    scopus 로고
    • Invertase Suc2 Is the key hydrolase for inulin degradation in Saccharomyces cerevisiae
    • Wang SA, Li FL. Invertase Suc2 Is the key hydrolase for inulin degradation in Saccharomyces cerevisiae. Appl Environ Microbiol. 2013;79:403-6.
    • (2013) Appl Environ Microbiol , vol.79 , pp. 403-406
    • Wang, S.A.1    Li, F.L.2
  • 11
    • 79952806663 scopus 로고    scopus 로고
    • Linking genotype and phenotype of Saccharomyces cerevisiae strains reveals metabolic engineering targets and leads to triterpene hyper-producers
    • Madsen KM, Udatha GD, Semba S, Otero JM, Koetter P, Nielsen J, et al. Linking genotype and phenotype of Saccharomyces cerevisiae strains reveals metabolic engineering targets and leads to triterpene hyper-producers. PLoS One. 2011;6:e14763.
    • (2011) PLoS One , vol.6
    • Madsen, K.M.1    Udatha, G.D.2    Semba, S.3    Otero, J.M.4    Koetter, P.5    Nielsen, J.6
  • 13
    • 0023891933 scopus 로고
    • Characterization of the glycosylation sites in yeast external invertase. I. N-linked oligosaccharide content of the individual sequons
    • Reddy V, Johnson R, Biemann K, Williams R, Ziegler F, Trimble R, et al. Characterization of the glycosylation sites in yeast external invertase. I. N-linked oligosaccharide content of the individual sequons. J Biol Chem. 1988;263:6978-85.
    • (1988) J Biol Chem , vol.263 , pp. 6978-6985
    • Reddy, V.1    Johnson, R.2    Biemann, K.3    Williams, R.4    Ziegler, F.5    Trimble, R.6
  • 14
    • 0032150560 scopus 로고    scopus 로고
    • Molecular cloning and sequence analysis of two endoinulinase genes from Aspergillus niger
    • Ohta K, Akimoto H, Matsuda S, Toshimitsu D, Nakamura T. Molecular cloning and sequence analysis of two endoinulinase genes from Aspergillus niger. Biosci Biotechnol Biochem. 1998;62:1731-8.
    • (1998) Biosci Biotechnol Biochem , vol.62 , pp. 1731-1738
    • Ohta, K.1    Akimoto, H.2    Matsuda, S.3    Toshimitsu, D.4    Nakamura, T.5
  • 15
    • 80052742763 scopus 로고    scopus 로고
    • Fructo-oligosaccharide synthesis by mutant versions of Saccharomyces cerevisiae invertase
    • Lafraya Á, Sanz-Aparicio J, Polaina J, Marín-Navarro J. Fructo-oligosaccharide synthesis by mutant versions of Saccharomyces cerevisiae invertase. Appl Environ Microbiol. 2011;77:6148-57.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 6148-6157
    • Lafraya, A.1    Sanz-Aparicio, J.2    Polaina, J.3    Marín-Navarro, J.4
  • 16
    • 77958586246 scopus 로고    scopus 로고
    • Discrimination of Saccharomyces cerevisiae and Saccharomyces paradoxus strains by the SUC2 gene sequences
    • Yuji Oda DM, Leo F, Urashima T. Discrimination of Saccharomyces cerevisiae and Saccharomyces paradoxus strains by the SUC2 gene sequences. J Gen Appl Microbiol. 2010;56:355-8.
    • (2010) J Gen Appl Microbiol , vol.56 , pp. 355-358
    • Yuji Oda, D.M.1    Leo, F.2    Urashima, T.3
  • 17
    • 0014408784 scopus 로고
    • Comparative study of the properties of the purified internal and external invertases from yeast
    • Gascón S, Neumann NP, Lampen JO. Comparative study of the properties of the purified internal and external invertases from yeast. J Biol Chem. 1968;243:1573-7.
    • (1968) J Biol Chem , vol.243 , pp. 1573-1577
    • Gascón, S.1    Neumann, N.P.2    Lampen, J.O.3
  • 18
    • 0017407126 scopus 로고
    • Subunit structure of external invertase from Saccharomyces cerevisiae
    • Trimble RB, Maley F. Subunit structure of external invertase from Saccharomyces cerevisiae. J Biol Chem. 1977;252:4409-12.
    • (1977) J Biol Chem , vol.252 , pp. 4409-4412
    • Trimble, R.B.1    Maley, F.2
  • 19
    • 0021111799 scopus 로고
    • Nucleotide sequence of the yeast SUC2 gene for invertase
    • Taussig R, Carlson M. Nucleotide sequence of the yeast SUC2 gene for invertase. Nucleic Acids Res. 1983;11:1943-54.
    • (1983) Nucleic Acids Res , vol.11 , pp. 1943-1954
    • Taussig, R.1    Carlson, M.2
  • 20
    • 84875986071 scopus 로고    scopus 로고
    • Three-dimensional structure of Saccharomyces invertase: role of a non-catalytic domain in oligomerization and substrate specificity
    • Sainz-Polo MA, Ramírez-Escudero M, Lafraya A, González B, Marín-Navarro J, Polaina J, et al. Three-dimensional structure of Saccharomyces invertase: role of a non-catalytic domain in oligomerization and substrate specificity. J Biol Chem. 2013;288:9755-66.
    • (2013) J Biol Chem , vol.288 , pp. 9755-9766
    • Sainz-Polo, M.A.1    Ramírez-Escudero, M.2    Lafraya, A.3    González, B.4    Marín-Navarro, J.5    Polaina, J.6
  • 21
    • 84866117237 scopus 로고    scopus 로고
    • Structural and functional basis for substrate specificity and catalysis of levan fructotransferase
    • Park J, Kim MI, Park YD, Shin I, Cha J, Kim CH, et al. Structural and functional basis for substrate specificity and catalysis of levan fructotransferase. J Biol Chem. 2012;287:31233-41.
    • (2012) J Biol Chem , vol.287 , pp. 31233-31241
    • Park, J.1    Kim, M.I.2    Park, Y.D.3    Shin, I.4    Cha, J.5    Kim, C.H.6
  • 23
    • 0030724259 scopus 로고    scopus 로고
    • Evidence that Snf-Swi controls chromatin structure over both the TATA and UAS regions of the SUC2 promoter in Saccharomyces cerevisiae
    • Wu L, Winston F. Evidence that Snf-Swi controls chromatin structure over both the TATA and UAS regions of the SUC2 promoter in Saccharomyces cerevisiae. Nucleic Acids Res. 1997;25:4230-4.
    • (1997) Nucleic Acids Res , vol.25 , pp. 4230-4234
    • Wu, L.1    Winston, F.2
  • 24
    • 0029879360 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE)
    • Martinez-Pastor M, Marchler G, Schüller C, Marchler-Bauer A, Ruis H, Estruch F. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 1996;15:2227-35.
    • (1996) EMBO J , vol.15 , pp. 2227-2235
    • Martinez-Pastor, M.1    Marchler, G.2    Schüller, C.3    Marchler-Bauer, A.4    Ruis, H.5    Estruch, F.6
  • 25
    • 0032519311 scopus 로고    scopus 로고
    • Identification of cis-acting elements in the SUC2 promoter of Saccharomyces cerevisiae required for activation of transcription
    • Bu Y, Schmidt MC. Identification of cis-acting elements in the SUC2 promoter of Saccharomyces cerevisiae required for activation of transcription. Nucleic Acids Res. 1998;26:1002-9.
    • (1998) Nucleic Acids Res , vol.26 , pp. 1002-1009
    • Bu, Y.1    Schmidt, M.C.2
  • 27
    • 0029783926 scopus 로고    scopus 로고
    • Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression
    • Lutfiyya LL, Johnston M. Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression. Mol Cell Biol. 1996;16:4790-7.
    • (1996) Mol Cell Biol , vol.16 , pp. 4790-4797
    • Lutfiyya, L.L.1    Johnston, M.2
  • 28
    • 84906786269 scopus 로고    scopus 로고
    • Ethanol production using a newly isolated Saccharomyces cerevisiae strain directly assimilating intact inulin with high degree of polymerization
    • Yang F, Liu Z, Dong W, Zhu L, Chen X, Li X. Ethanol production using a newly isolated Saccharomyces cerevisiae strain directly assimilating intact inulin with high degree of polymerization. Biotechnol Appl Biochem. 2013;61:418-25.
    • (2013) Biotechnol Appl Biochem , vol.61 , pp. 418-425
    • Yang, F.1    Liu, Z.2    Dong, W.3    Zhu, L.4    Chen, X.5    Li, X.6
  • 29
    • 0027968068 scopus 로고
    • CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice
    • Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. J Nucleic Acids Res. 1994;22:4673-80.
    • (1994) J Nucleic Acids Res , vol.22 , pp. 4673-4680
    • Thompson, J.D.1    Higgins, D.G.2    Gibson, T.J.3
  • 30
    • 33645021327 scopus 로고    scopus 로고
    • RF cloning: a restriction-free method for inserting target genes into plasmids
    • Van Den Ent F, Löwe J. RF cloning: a restriction-free method for inserting target genes into plasmids. J Biochem Biophys Methods. 2006;67:67-74.
    • (2006) J Biochem Biophys Methods , vol.67 , pp. 67-74
    • Van Den Ent, F.1    Löwe, J.2
  • 31
    • 0032580437 scopus 로고    scopus 로고
    • An improved protocol for the preparation of yeast cells for transformation by electroporation
    • Thompson JR, Register E, Curotto J, Kurtz M, Kelly R. An improved protocol for the preparation of yeast cells for transformation by electroporation. Yeast. 1998;14:565-71.
    • (1998) Yeast , vol.14 , pp. 565-571
    • Thompson, J.R.1    Register, E.2    Curotto, J.3    Kurtz, M.4    Kelly, R.5
  • 32
    • 42549086336 scopus 로고    scopus 로고
    • Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli
    • Stahlberg A, Elbing K, Andrade-Garda JM, Sjogreen B, Forootan A, Kubista M. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli. BMC Genomics. 2008; 9: doi:10.1186/1471-2164-9-170.
    • (2008) BMC Genomics , vol.9
    • Stahlberg, A.1    Elbing, K.2    Andrade-Garda, J.M.3    Sjogreen, B.4    Forootan, A.5    Kubista, M.6
  • 33
    • 0003611323 scopus 로고    scopus 로고
    • Methods in yeast genetics - a cold spring harbor laboratory course manual
    • Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press
    • Adams A, Gottschling D-E, Kaiser C-A, Stearns T. Methods in yeast genetics - a cold spring harbor laboratory course manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1997.
    • (1997)
    • Adams, A.1    Gottschling, D.-E.2    Kaiser, C.-A.3    Stearns, T.4
  • 34
    • 84875807144 scopus 로고    scopus 로고
    • Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing
    • Hu N, Yuan B, Sun J, Wang S-A, Li F-L. Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing. Appl Microbiol Biotechnol. 2012;95:1359-68.
    • (2012) Appl Microbiol Biotechnol , vol.95 , pp. 1359-1368
    • Hu, N.1    Yuan, B.2    Sun, J.3    Wang, S.-A.4    Li, F.-L.5
  • 35
    • 33747333106 scopus 로고
    • Use of dinitrosalicylic acid reagent for determination of reducing sugar
    • Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31:426-8.
    • (1959) Anal Chem , vol.31 , pp. 426-428
    • Miller, G.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.