-
1
-
-
79551681592
-
Biotechnological potential of inulin for bioprocesses
-
Chi ZM, Zhang T, Cao TS, Liu XY, Cui W, Zhao CH. Biotechnological potential of inulin for bioprocesses. Bioresoure Technol. 2011;102:4295-303.
-
(2011)
Bioresoure Technol
, vol.102
, pp. 4295-4303
-
-
Chi, Z.M.1
Zhang, T.2
Cao, T.S.3
Liu, X.Y.4
Cui, W.5
Zhao, C.H.6
-
2
-
-
0026138226
-
Cultivation and utilization of Jerusalem artichoke for ethanol, single cell protein, and high-fructose syrup production
-
Bajpai PK, Bajpai P. Cultivation and utilization of Jerusalem artichoke for ethanol, single cell protein, and high-fructose syrup production. Enzyme Microb Technol. 1991;13:359-62.
-
(1991)
Enzyme Microb Technol
, vol.13
, pp. 359-362
-
-
Bajpai, P.K.1
Bajpai, P.2
-
3
-
-
33646868809
-
Inulin-containing biomass for ethanol production: carbohydrate extraction and ethanol fermentation
-
Negro MJ, Ballesteros I, Manzanares P, Oliva JM, Sáez F, Ballesteros M. Inulin-containing biomass for ethanol production: carbohydrate extraction and ethanol fermentation. Appl Biochem Biotechnol. 2006;129-132:922-32.
-
(2006)
Appl Biochem Biotechnol
, vol.129-132
, pp. 922-932
-
-
Negro, M.J.1
Ballesteros, I.2
Manzanares, P.3
Oliva, J.M.4
Sáez, F.5
Ballesteros, M.6
-
4
-
-
56649088251
-
Ethanol fermentation with Kluyveromyces marxianus from Jerusalem artichoke grown in salina and irrigated with a mixture of seawater and freshwater
-
Yuan W, Zhao X, Ge X, Bai F. Ethanol fermentation with Kluyveromyces marxianus from Jerusalem artichoke grown in salina and irrigated with a mixture of seawater and freshwater. J Appl Microbiol. 2008;105:2076-83.
-
(2008)
J Appl Microbiol
, vol.105
, pp. 2076-2083
-
-
Yuan, W.1
Zhao, X.2
Ge, X.3
Bai, F.4
-
5
-
-
77957818533
-
Kluyveromyces marxianus: A yeast emerging from its sister's shadow
-
Lane MM, Morrissey JP. Kluyveromyces marxianus: A yeast emerging from its sister's shadow. Fungal Biol Rev. 2010;24:17-26.
-
(2010)
Fungal Biol Rev
, vol.24
, pp. 17-26
-
-
Lane, M.M.1
Morrissey, J.P.2
-
6
-
-
0027523491
-
Production of high concentrations of ethanol from inulin by simultaneous saccharification and fermentation using Aspergillus niger and Saccharomyces cerevisiae
-
Ohta K, Hamada S, Nakamura T. Production of high concentrations of ethanol from inulin by simultaneous saccharification and fermentation using Aspergillus niger and Saccharomyces cerevisiae. Appl Environ Microbiol. 1993;59:729-33.
-
(1993)
Appl Environ Microbiol
, vol.59
, pp. 729-733
-
-
Ohta, K.1
Hamada, S.2
Nakamura, T.3
-
7
-
-
78650692578
-
Ethanol fermentation from Jerusalem artichoke powder using Saccharomyces cerevisiae KCCM50549 without pretreatment for inulin hydrolysis
-
Lim S-H, Ryu J-M, Lee H, Jeon JH, Sok D-E, Choi E-S. Ethanol fermentation from Jerusalem artichoke powder using Saccharomyces cerevisiae KCCM50549 without pretreatment for inulin hydrolysis. Bioresoure Technol. 2011;102:2109-11.
-
(2011)
Bioresoure Technol
, vol.102
, pp. 2109-2111
-
-
Lim, S.-H.1
Ryu, J.-M.2
Lee, H.3
Jeon, J.H.4
Sok, D.-E.5
Choi, E.-S.6
-
8
-
-
0033946526
-
Influence of yeast flocculation on the rate of Jerusalem artichoke extract fermentation
-
Schorr-Galindo S, Ghommidh C, Guiraud J. Influence of yeast flocculation on the rate of Jerusalem artichoke extract fermentation. Curr Microbiol. 2000;41:89-95.
-
(2000)
Curr Microbiol
, vol.41
, pp. 89-95
-
-
Schorr-Galindo, S.1
Ghommidh, C.2
Guiraud, J.3
-
9
-
-
84886291101
-
Improved ethanol fermentation by heterologous endoinulinase and inherent invertase from inulin by Saccharomyces cerevisiae
-
Yuan B, Wang SA, Li FL. Improved ethanol fermentation by heterologous endoinulinase and inherent invertase from inulin by Saccharomyces cerevisiae. Bioresoure Technol. 2013;139:402-5.
-
(2013)
Bioresoure Technol
, vol.139
, pp. 402-405
-
-
Yuan, B.1
Wang, S.A.2
Li, F.L.3
-
10
-
-
84871894020
-
Invertase Suc2 Is the key hydrolase for inulin degradation in Saccharomyces cerevisiae
-
Wang SA, Li FL. Invertase Suc2 Is the key hydrolase for inulin degradation in Saccharomyces cerevisiae. Appl Environ Microbiol. 2013;79:403-6.
-
(2013)
Appl Environ Microbiol
, vol.79
, pp. 403-406
-
-
Wang, S.A.1
Li, F.L.2
-
11
-
-
79952806663
-
Linking genotype and phenotype of Saccharomyces cerevisiae strains reveals metabolic engineering targets and leads to triterpene hyper-producers
-
Madsen KM, Udatha GD, Semba S, Otero JM, Koetter P, Nielsen J, et al. Linking genotype and phenotype of Saccharomyces cerevisiae strains reveals metabolic engineering targets and leads to triterpene hyper-producers. PLoS One. 2011;6:e14763.
-
(2011)
PLoS One
, vol.6
-
-
Madsen, K.M.1
Udatha, G.D.2
Semba, S.3
Otero, J.M.4
Koetter, P.5
Nielsen, J.6
-
13
-
-
0023891933
-
Characterization of the glycosylation sites in yeast external invertase. I. N-linked oligosaccharide content of the individual sequons
-
Reddy V, Johnson R, Biemann K, Williams R, Ziegler F, Trimble R, et al. Characterization of the glycosylation sites in yeast external invertase. I. N-linked oligosaccharide content of the individual sequons. J Biol Chem. 1988;263:6978-85.
-
(1988)
J Biol Chem
, vol.263
, pp. 6978-6985
-
-
Reddy, V.1
Johnson, R.2
Biemann, K.3
Williams, R.4
Ziegler, F.5
Trimble, R.6
-
14
-
-
0032150560
-
Molecular cloning and sequence analysis of two endoinulinase genes from Aspergillus niger
-
Ohta K, Akimoto H, Matsuda S, Toshimitsu D, Nakamura T. Molecular cloning and sequence analysis of two endoinulinase genes from Aspergillus niger. Biosci Biotechnol Biochem. 1998;62:1731-8.
-
(1998)
Biosci Biotechnol Biochem
, vol.62
, pp. 1731-1738
-
-
Ohta, K.1
Akimoto, H.2
Matsuda, S.3
Toshimitsu, D.4
Nakamura, T.5
-
16
-
-
77958586246
-
Discrimination of Saccharomyces cerevisiae and Saccharomyces paradoxus strains by the SUC2 gene sequences
-
Yuji Oda DM, Leo F, Urashima T. Discrimination of Saccharomyces cerevisiae and Saccharomyces paradoxus strains by the SUC2 gene sequences. J Gen Appl Microbiol. 2010;56:355-8.
-
(2010)
J Gen Appl Microbiol
, vol.56
, pp. 355-358
-
-
Yuji Oda, D.M.1
Leo, F.2
Urashima, T.3
-
17
-
-
0014408784
-
Comparative study of the properties of the purified internal and external invertases from yeast
-
Gascón S, Neumann NP, Lampen JO. Comparative study of the properties of the purified internal and external invertases from yeast. J Biol Chem. 1968;243:1573-7.
-
(1968)
J Biol Chem
, vol.243
, pp. 1573-1577
-
-
Gascón, S.1
Neumann, N.P.2
Lampen, J.O.3
-
18
-
-
0017407126
-
Subunit structure of external invertase from Saccharomyces cerevisiae
-
Trimble RB, Maley F. Subunit structure of external invertase from Saccharomyces cerevisiae. J Biol Chem. 1977;252:4409-12.
-
(1977)
J Biol Chem
, vol.252
, pp. 4409-4412
-
-
Trimble, R.B.1
Maley, F.2
-
19
-
-
0021111799
-
Nucleotide sequence of the yeast SUC2 gene for invertase
-
Taussig R, Carlson M. Nucleotide sequence of the yeast SUC2 gene for invertase. Nucleic Acids Res. 1983;11:1943-54.
-
(1983)
Nucleic Acids Res
, vol.11
, pp. 1943-1954
-
-
Taussig, R.1
Carlson, M.2
-
20
-
-
84875986071
-
Three-dimensional structure of Saccharomyces invertase: role of a non-catalytic domain in oligomerization and substrate specificity
-
Sainz-Polo MA, Ramírez-Escudero M, Lafraya A, González B, Marín-Navarro J, Polaina J, et al. Three-dimensional structure of Saccharomyces invertase: role of a non-catalytic domain in oligomerization and substrate specificity. J Biol Chem. 2013;288:9755-66.
-
(2013)
J Biol Chem
, vol.288
, pp. 9755-9766
-
-
Sainz-Polo, M.A.1
Ramírez-Escudero, M.2
Lafraya, A.3
González, B.4
Marín-Navarro, J.5
Polaina, J.6
-
21
-
-
84866117237
-
Structural and functional basis for substrate specificity and catalysis of levan fructotransferase
-
Park J, Kim MI, Park YD, Shin I, Cha J, Kim CH, et al. Structural and functional basis for substrate specificity and catalysis of levan fructotransferase. J Biol Chem. 2012;287:31233-41.
-
(2012)
J Biol Chem
, vol.287
, pp. 31233-31241
-
-
Park, J.1
Kim, M.I.2
Park, Y.D.3
Shin, I.4
Cha, J.5
Kim, C.H.6
-
22
-
-
0032533763
-
Structural model for family 32 of glycosyl-hydrolase enzymes
-
Pons T, Olmea O, Chinea G, Beldarraín A, Márquez G, Acosta N, et al. Structural model for family 32 of glycosyl-hydrolase enzymes. Proteins. 1998;33:383-95.
-
(1998)
Proteins
, vol.33
, pp. 383-395
-
-
Pons, T.1
Olmea, O.2
Chinea, G.3
Beldarraín, A.4
Márquez, G.5
Acosta, N.6
-
23
-
-
0030724259
-
Evidence that Snf-Swi controls chromatin structure over both the TATA and UAS regions of the SUC2 promoter in Saccharomyces cerevisiae
-
Wu L, Winston F. Evidence that Snf-Swi controls chromatin structure over both the TATA and UAS regions of the SUC2 promoter in Saccharomyces cerevisiae. Nucleic Acids Res. 1997;25:4230-4.
-
(1997)
Nucleic Acids Res
, vol.25
, pp. 4230-4234
-
-
Wu, L.1
Winston, F.2
-
24
-
-
0029879360
-
The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE)
-
Martinez-Pastor M, Marchler G, Schüller C, Marchler-Bauer A, Ruis H, Estruch F. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 1996;15:2227-35.
-
(1996)
EMBO J
, vol.15
, pp. 2227-2235
-
-
Martinez-Pastor, M.1
Marchler, G.2
Schüller, C.3
Marchler-Bauer, A.4
Ruis, H.5
Estruch, F.6
-
25
-
-
0032519311
-
Identification of cis-acting elements in the SUC2 promoter of Saccharomyces cerevisiae required for activation of transcription
-
Bu Y, Schmidt MC. Identification of cis-acting elements in the SUC2 promoter of Saccharomyces cerevisiae required for activation of transcription. Nucleic Acids Res. 1998;26:1002-9.
-
(1998)
Nucleic Acids Res
, vol.26
, pp. 1002-1009
-
-
Bu, Y.1
Schmidt, M.C.2
-
27
-
-
0029783926
-
Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression
-
Lutfiyya LL, Johnston M. Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression. Mol Cell Biol. 1996;16:4790-7.
-
(1996)
Mol Cell Biol
, vol.16
, pp. 4790-4797
-
-
Lutfiyya, L.L.1
Johnston, M.2
-
28
-
-
84906786269
-
Ethanol production using a newly isolated Saccharomyces cerevisiae strain directly assimilating intact inulin with high degree of polymerization
-
Yang F, Liu Z, Dong W, Zhu L, Chen X, Li X. Ethanol production using a newly isolated Saccharomyces cerevisiae strain directly assimilating intact inulin with high degree of polymerization. Biotechnol Appl Biochem. 2013;61:418-25.
-
(2013)
Biotechnol Appl Biochem
, vol.61
, pp. 418-425
-
-
Yang, F.1
Liu, Z.2
Dong, W.3
Zhu, L.4
Chen, X.5
Li, X.6
-
29
-
-
0027968068
-
CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice
-
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. J Nucleic Acids Res. 1994;22:4673-80.
-
(1994)
J Nucleic Acids Res
, vol.22
, pp. 4673-4680
-
-
Thompson, J.D.1
Higgins, D.G.2
Gibson, T.J.3
-
30
-
-
33645021327
-
RF cloning: a restriction-free method for inserting target genes into plasmids
-
Van Den Ent F, Löwe J. RF cloning: a restriction-free method for inserting target genes into plasmids. J Biochem Biophys Methods. 2006;67:67-74.
-
(2006)
J Biochem Biophys Methods
, vol.67
, pp. 67-74
-
-
Van Den Ent, F.1
Löwe, J.2
-
31
-
-
0032580437
-
An improved protocol for the preparation of yeast cells for transformation by electroporation
-
Thompson JR, Register E, Curotto J, Kurtz M, Kelly R. An improved protocol for the preparation of yeast cells for transformation by electroporation. Yeast. 1998;14:565-71.
-
(1998)
Yeast
, vol.14
, pp. 565-571
-
-
Thompson, J.R.1
Register, E.2
Curotto, J.3
Kurtz, M.4
Kelly, R.5
-
32
-
-
42549086336
-
Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli
-
Stahlberg A, Elbing K, Andrade-Garda JM, Sjogreen B, Forootan A, Kubista M. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli. BMC Genomics. 2008; 9: doi:10.1186/1471-2164-9-170.
-
(2008)
BMC Genomics
, vol.9
-
-
Stahlberg, A.1
Elbing, K.2
Andrade-Garda, J.M.3
Sjogreen, B.4
Forootan, A.5
Kubista, M.6
-
33
-
-
0003611323
-
Methods in yeast genetics - a cold spring harbor laboratory course manual
-
Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press
-
Adams A, Gottschling D-E, Kaiser C-A, Stearns T. Methods in yeast genetics - a cold spring harbor laboratory course manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1997.
-
(1997)
-
-
Adams, A.1
Gottschling, D.-E.2
Kaiser, C.-A.3
Stearns, T.4
-
34
-
-
84875807144
-
Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing
-
Hu N, Yuan B, Sun J, Wang S-A, Li F-L. Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing. Appl Microbiol Biotechnol. 2012;95:1359-68.
-
(2012)
Appl Microbiol Biotechnol
, vol.95
, pp. 1359-1368
-
-
Hu, N.1
Yuan, B.2
Sun, J.3
Wang, S.-A.4
Li, F.-L.5
-
35
-
-
33747333106
-
Use of dinitrosalicylic acid reagent for determination of reducing sugar
-
Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31:426-8.
-
(1959)
Anal Chem
, vol.31
, pp. 426-428
-
-
Miller, G.L.1
|