메뉴 건너뛰기




Volumn 160, Issue , 2015, Pages 73-84

A robust ensemble approach to learn from positive and unlabeled data using SVM base models

Author keywords

Classification; Ensemble learning; Semi supervised learning; Support vector machine

Indexed keywords

CLASSIFICATION (OF INFORMATION); STATISTICAL METHODS; SUPPORT VECTOR MACHINES;

EID: 84927956192     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.10.081     Document Type: Article
Times cited : (85)

References (46)
  • 4
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms. bagging, boosting, and variants
    • Bauer Eric, Kohavi Ron An empirical comparison of voting classification algorithms. bagging, boosting, and variants. Mach. Learn. 1999, 36(1-2):105-139.
    • (1999) Mach. Learn. , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 5
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • Bergstra James, Bengio Yoshua Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13(1):281-305.
    • (2012) J. Mach. Learn. Res. , vol.13 , Issue.1 , pp. 281-305
    • Bergstra, J.1    Bengio, Y.2
  • 6
    • 0033400675 scopus 로고    scopus 로고
    • Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables
    • Blackard Jock A., Dean Denis J. Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables. Comput. Electron. Agric. 1999, 24(December (3)):131-151.
    • (1999) Comput. Electron. Agric. , vol.24 , Issue.DECEMBER 3 , pp. 131-151
    • Blackard, J.A.1    Dean, D.J.2
  • 7
    • 79551494881 scopus 로고    scopus 로고
    • Semi-supervised novelty detection
    • Blanchard Gilles, Lee Gyemin, Scott Clayton Semi-supervised novelty detection. J. Mach. Learn. Res. 2010, 11:2973-3009.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 2973-3009
    • Blanchard, G.1    Lee, G.2    Scott, C.3
  • 9
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • ISSN 0885-6125
    • Breiman Leo. Bagging predictors. Mach. Learn. 1996, 24(August (2)):123-140. ISSN 0885-6125.
    • (1996) Mach. Learn. , vol.24 , Issue.AUGUST 2 , pp. 123-140
    • Breiman, L.1
  • 10
    • 0034276320 scopus 로고    scopus 로고
    • Randomizing outputs to increase prediction accuracy
    • Breiman Leo. Randomizing outputs to increase prediction accuracy. Mach. Learn. 2000, 40(3):229-242.
    • (2000) Mach. Learn. , vol.40 , Issue.3 , pp. 229-242
    • Breiman, L.1
  • 11
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman Leo. Random forests. Mach. Learn. 2001, 45(1):5-32.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 12
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods. a survey and categorisation
    • Brown Gavin, Wyatt Jeremy, Harris Rachel, Yao Xin Diversity creation methods. a survey and categorisation. Inf. Fusion 2005, 6(1):5-20.
    • (2005) Inf. Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 14
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM. a library for support vector machines
    • 27:1-27:27, Software available at
    • Chang Chih-Chung, Lin Chih-Jen LIBSVM. a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2:27:1-27:27. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2
    • Chang, C.-C.1    Lin, C.-J.2
  • 15
    • 84897070004 scopus 로고    scopus 로고
    • EnsembleSVM. a library for ensemble learning using support vector machines
    • Claesen Marc, De Smet Frank, Suykens Johan A.K., De Moor Bart EnsembleSVM. a library for ensemble learning using support vector machines. J. Mach. Learn. Res. 2014, 15:141-145. URL http://jmlr.org/papers/v15/claesen14a.html.
    • (2014) J. Mach. Learn. Res. , vol.15 , pp. 141-145
    • Claesen, M.1    De Smet, F.2    Suykens, J.A.K.3    De Moor, B.4
  • 18
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar Janez Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7:1-30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1
  • 19
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees. bagging, boosting, and randomization
    • Dietterich Thomas G. An experimental comparison of three methods for constructing ensembles of decision trees. bagging, boosting, and randomization. Mach. Learn. 2000, 40(2):139-157.
    • (2000) Mach. Learn. , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 20
    • 6444229449 scopus 로고    scopus 로고
    • Vehicle classification in distributed sensor networks
    • Duarte Marco F., Hu Yu Hen. Vehicle classification in distributed sensor networks. J. Parallel Distrib. Comput. 2004, 64(7):826-838.
    • (2004) J. Parallel Distrib. Comput. , vol.64 , Issue.7 , pp. 826-838
    • Duarte, M.F.1    Hu, Y.H.2
  • 23
    • 84899651693 scopus 로고    scopus 로고
    • Classification in the presence of label noise. a survey
    • ISSN 2162-237X
    • Frenay B., Verleysen M. Classification in the presence of label noise. a survey. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25(May (5)):845-869. ISSN 2162-237X. 10.1109/TNNLS.2013.2292894.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst. , vol.25 , Issue.MAY 5 , pp. 845-869
    • Frenay, B.1    Verleysen, M.2
  • 24
    • 3543107923 scopus 로고    scopus 로고
    • Bagging equalizes influence
    • Grandvalet Yves Bagging equalizes influence. Mach. Learn. 2004, 55(3):251-270.
    • (2004) Mach. Learn. , vol.55 , Issue.3 , pp. 251-270
    • Grandvalet, Y.1
  • 25
    • 84927958012 scopus 로고    scopus 로고
    • Genetic programming
    • Springer, Berlin, Heidelberg
    • Keijzer Maarten, Babovic Vladan Genetic programming. Genetic Programming, Lecture Notes in Computer Science 2000, vol. 1802:76-90. Springer, Berlin, Heidelberg, ISBN 978-3-540-67339-2, URL http://dx.doi.org/10.1007/978-3-540-46239-2_6. 10.1007/978-3-540-46239-2_6.
    • (2000) Genetic Programming, Lecture Notes in Computer Science , vol.1802 , pp. 76-90
    • Keijzer, M.1    Babovic, V.2
  • 27
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Yann LeCun Léon Bottou, Yoshua Bengio, Patrick Haffner, Gradient-based learning applied to document recognition, in: Proceedings of the IEEE, 1998, pp. 2278-2324.
    • (1998) Proceedings of the IEEE , pp. 2278-2324
    • Bottou, Y.L.L.1    Bengio, Y.2    Haffner, P.3
  • 32
    • 26944494511 scopus 로고    scopus 로고
    • Partially supervised classification-based on weighted unlabeled samples support vector machine
    • Springer-Verlag, Berlin, Heidelberg, 3-540-27894-X
    • Zhigang Liu, Wenzhong Shi, Deren Li, Qianqing Qin, Partially supervised classification-based on weighted unlabeled samples support vector machine, in: Proceedings of the First International Conference on Advanced Data Mining and Applications, ADMA[U+05F3]05, Springer-Verlag, Berlin, Heidelberg, 2005, pp. 118-129. ISBN 3-540-27894-X, 978-3-540-27894-8.
    • (2005) Proceedings of the First International Conference on Advanced Data Mining and Applications, ADMA[U+05F3]05 , pp. 118-129
    • Liu, Z.1    Shi, W.2    Li, D.3    Qin, Q.4
  • 33
    • 68949164781 scopus 로고    scopus 로고
    • Out-of-bag estimation of the optimal sample size in bagging
    • Martínez-Muñoz Gonzalo., Suárez Alberto. Out-of-bag estimation of the optimal sample size in bagging. Pattern Recognit. 2010, 43(1):143-152.
    • (2010) Pattern Recognit. , vol.43 , Issue.1 , pp. 143-152
    • Martínez-Muñoz, G.1    Suárez, A.2
  • 34
    • 84891632855 scopus 로고    scopus 로고
    • Jean-Philippe Vert, A bagging SVM to learn from positive and unlabeled examples
    • Fantine Mordelet Jean-Philippe Vert, A bagging SVM to learn from positive and unlabeled examples. Pattern Recognition Letters 2014, 37:201-209.
    • (2014) Pattern Recognition Letters , vol.37 , pp. 201-209
    • Fantine, M.1
  • 35
    • 80053478616 scopus 로고    scopus 로고
    • ProDiGe. prioritization of disease genes with multitask machine learning from positive and unlabeled examples
    • Mordelet Fantine, Vert Jean-Philippe ProDiGe. prioritization of disease genes with multitask machine learning from positive and unlabeled examples. BMC Bioinform. 2011, 12(1):389.
    • (2011) BMC Bioinform. , vol.12 , Issue.1 , pp. 389
    • Mordelet, F.1    Vert, J.-P.2
  • 36
    • 84910664178 scopus 로고    scopus 로고
    • Distribution-free multiple comparisons
    • International Biometric Soc 1441 I ST, NW, Suite 700, Washington, DC 20005-2210, 1962.
    • Peter Nemenyi, Distribution-free multiple comparisons, in: Biometrics, vol. 18, page 263. International Biometric Soc 1441 I ST, NW, Suite 700, Washington, DC 20005-2210, 1962.
    • Biometrics , vol.18 , pp. 263
    • Nemenyi, P.1
  • 40
    • 84927966608 scopus 로고    scopus 로고
    • The Out-of-Bootstrap Method for Model Averaging and Selection
    • University of Toronto
    • J. Sunil Rao, Robert Tibshirani, The Out-of-Bootstrap Method for Model Averaging and Selection, University of Toronto, 1997.
    • (1997)
    • Sunil Rao, J.1    Tibshirani, R.2
  • 41
    • 11144323163 scopus 로고    scopus 로고
    • Virtual screening of chemical libraries
    • ISSN 0028-0836
    • Shoichet Brian.K. Virtual screening of chemical libraries. Nature 2004, 432(December (7019)):862-865. ISSN 0028-0836.
    • (2004) Nature , vol.432 , Issue.DECEMBER 7019 , pp. 862-865
    • Shoichet, B.1
  • 43
    • 30044443980 scopus 로고    scopus 로고
    • Single-class classification with mapping convergence
    • (1-3) ISSN 0885-6125
    • Yu Hwanjo Single-class classification with mapping convergence. Mach. Learn. 2005, 61(November (1-3)):49-69. ISSN 0885-6125.
    • (2005) Mach. Learn. , vol.61 , Issue.NOVEMBER , pp. 49-69
    • Yu, H.1
  • 45
    • 19544372918 scopus 로고    scopus 로고
    • Class noise vs. attribute noise. a quantitative study
    • Zhu Xingquan, Wu Xindong Class noise vs. attribute noise. a quantitative study. Artif. Intell. Rev. 2004, 22(3):177-210.
    • (2004) Artif. Intell. Rev. , vol.22 , Issue.3 , pp. 177-210
    • Zhu, X.1    Wu, X.2
  • 46
    • 84927975913 scopus 로고    scopus 로고
    • Easy Hyperparameter Search Using Optunity
    • volume (abs/1412.1114)
    • Claesen Marc, Simm Jaak, Popovic Dusan, Moreau Yves, De Moor Bart Easy Hyperparameter Search Using Optunity. CoRR 2014, volume (abs/1412.1114) http://arxiv.org/abs/1412.1114.
    • (2014) CoRR
    • Claesen, M.1    Simm, J.2    Popovic, D.3    Moreau, Y.4    De Moor, B.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.