-
1
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36:1/2, 105-139.
-
(1999)
Machine Learning
, vol.36
, Issue.1-2
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
2
-
-
0030211964
-
Bagging predictors
-
Breiman, L. (1996a). Bagging predictors. Machine Learning, 24:2, 123-140.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
3
-
-
0003619255
-
-
Technical Report 460, Statistics Department, University of California at Berkeley
-
Breiman, L. (1996b). Bias, variance, and arcing classifiers. Technical Report 460, Statistics Department, University of California at Berkeley.
-
(1996)
Bias, Variance, and Arcing Classifiers
-
-
Breiman, L.1
-
4
-
-
0030344230
-
Heuristics of instability and stabilization in model selection
-
Breiman, L. (1996c). Heuristics of instability and stabilization in model selection. The Annals of Statistics, 24:6, 2350-2383.
-
(1996)
The Annals of Statistics
, vol.24
, Issue.6
, pp. 2350-2383
-
-
Breiman, L.1
-
5
-
-
0346786584
-
Arcing classifiers
-
Breiman, L. (1998). Arcing classifiers. The Annals of Statistics, 26:3, 801-849.
-
(1998)
The Annals of Statistics
, vol.26
, Issue.3
, pp. 801-849
-
-
Breiman, L.1
-
6
-
-
0000275022
-
Prediction games and arcing algorithms
-
Breiman, L. (1999), Prediction games and arcing algorithms. Neural Computation, 11:7, 1493-1517.
-
(1999)
Neural Computation
, vol.11
, Issue.7
, pp. 1493-1517
-
-
Breiman, L.1
-
7
-
-
3543059342
-
-
Technical Report 92, Seminar für Statistik, ETH, Zürich
-
Bühlmann, P., & Yu, B. (2000). Explaining Bagging. Technical Report 92, Seminar für Statistik, ETH, Zürich.
-
(2000)
Explaining Bagging
-
-
Bühlmann, P.1
Yu, B.2
-
9
-
-
3543076974
-
Estimating equivalent kernels for neural networks: A data perturbation approach
-
M. Mozer, M. Jordan, & T. Petsche (Eds.). MIT Press
-
Burgess, A. N. (1997). Estimating equivalent kernels For neural networks: A data perturbation approach. In M. Mozer, M. Jordan, & T. Petsche (Eds.), Advances in Neural Information Processing Systems 9 (pp. 382-388). MIT Press.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 382-388
-
-
Burgess, A.N.1
-
10
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
-
Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Machine Learning, 40:2, 1-19.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 1-19
-
-
Dietterich, T.G.1
-
14
-
-
0013281807
-
-
Technical Report, Stanford University, Stanford, CA
-
Friedman, J. H., & Hall, P. (2000), On bagging and non-linear estimation. Technical Report, Stanford University, Stanford, CA.
-
(2000)
On Bagging and Non-linear Estimation
-
-
Friedman, J.H.1
Hall, P.2
-
20
-
-
0030374103
-
Bootstrapping with noise: An effective regularization technique
-
Raviv, Y., & Intrator, N. (1996). Bootstrapping with noise: An effective regularization technique. Connection Science, 8:3, 355-372.
-
(1996)
Connection Science
, vol.8
, Issue.3
, pp. 355-372
-
-
Raviv, Y.1
Intrator, N.2
-
21
-
-
0042689308
-
Robust regression, positive breakdown
-
S. Kotz, C. Read, & D. Banks (Eds.). Wiley
-
Rousseeuw, P. J. (1997). Robust regression, positive breakdown. In S. Kotz, C. Read, & D. Banks (Eds.), Encyclopedia of statistical sciences. Wiley.
-
(1997)
Encyclopedia of Statistical Sciences
-
-
Rousseeuw, P.J.1
-
23
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
Schapire, R., Freund, Y., Bartlett, P., & Lee, W. S. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26:5, 1651-1686.
-
(1998)
The Annals of Statistics
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
24
-
-
0000078841
-
Averaging regularized estimators
-
Taniguchi, M., & Tresp, V. (1997). Averaging regularized estimators. Neural Computation, 9:7, 1163-1178.
-
(1997)
Neural Computation
, vol.9
, Issue.7
, pp. 1163-1178
-
-
Taniguchi, M.1
Tresp, V.2
-
25
-
-
0039724913
-
The covariance inflation criterion for adaptive model selection
-
Tibshirani, R. J., & Knight, K. (1999). The covariance inflation criterion for adaptive model selection. Journal of the Royal Statistical Society, B, 61:3, 529-546.
-
(1999)
Journal of the Royal Statistical Society, B
, vol.61
, Issue.3
, pp. 529-546
-
-
Tibshirani, R.J.1
Knight, K.2
|