메뉴 건너뛰기




Volumn 56, Issue , 2015, Pages 161-176

Automated classification based on video data at intersections with heavy pedestrian and bicycle traffic: Methodology and application

Author keywords

Object classification; Object tracking; Road safety; Traffic data collection; Video analysis

Indexed keywords

AUTOMATION; CLASSIFICATION (OF INFORMATION); DATA ACQUISITION; MOTOR TRANSPORTATION; OBJECT TRACKING; ROADS AND STREETS; SUPPORT VECTOR MACHINES; VEHICLES; VIDEO RECORDING;

EID: 84927771872     PISSN: 0968090X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trc.2015.04.003     Document Type: Article
Times cited : (64)

References (46)
  • 1
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • (accessed 23.07.13)
    • Aha D.W., Kibler D., Albert M.K. Instance-based learning algorithms. Mach. Learn. 1991, 6(1):37-66. (accessed 23.07.13).
    • (1991) Mach. Learn. , vol.6 , Issue.1 , pp. 37-66
    • Aha, D.W.1    Kibler, D.2    Albert, M.K.3
  • 3
    • 84927774273 scopus 로고    scopus 로고
    • Traffic Monitoring Guide. U.S. Department of Transportation, Federal Highway Administration, Washington, DC.
    • Anon, 2001. Traffic Monitoring Guide. U.S. Department of Transportation, Federal Highway Administration, Washington, DC.
    • (2001)
  • 4
    • 33744506087 scopus 로고    scopus 로고
    • Behavioral priors for detection and tracking of pedestrians in video sequences
    • (accessed 24.06.13)
    • Antonini G., et al. Behavioral priors for detection and tracking of pedestrians in video sequences. Int. J. Comput. Vis. 2006, 69(2):159-180. (accessed 24.06.13).
    • (2006) Int. J. Comput. Vis. , vol.69 , Issue.2 , pp. 159-180
    • Antonini, G.1
  • 5
    • 43049174575 scopus 로고    scopus 로고
    • Speeded-up robust features (SURF)
    • (accessed 22.05.13)
    • Bay H., et al. Speeded-up robust features (SURF). Comput. Vis. Image Understand. 2008, 110(3):346-359. (accessed 22.05.13).
    • (2008) Comput. Vis. Image Understand. , vol.110 , Issue.3 , pp. 346-359
    • Bay, H.1
  • 7
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • (accessed 16.07.13)
    • Burges C. A tutorial on support vector machines for pattern recognition. Data Mining Knowl. Discov. 1998, 167:121-167. (accessed 16.07.13).
    • (1998) Data Mining Knowl. Discov. , vol.167 , pp. 121-167
    • Burges, C.1
  • 8
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • (accessed 22.05.13)
    • Chang C.-C., Lin C.-J. LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2(3):1-27. (accessed 22.05.13).
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.3 , pp. 1-27
    • Chang, C.-C.1    Lin, C.-J.2
  • 10
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • (accessed 08.12.14)
    • Domingos P., Pazzani M. On the optimality of the simple Bayesian classifier under zero-one loss. Mach. Learn. 1997, 130:103-130. (accessed 08.12.14).
    • (1997) Mach. Learn. , vol.130 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 11
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • (accessed 06.08.13)
    • Fawcett T. An introduction to ROC analysis. Pattern Recogn. Lett. 2006, 27(8):861-874. (accessed 06.08.13).
    • (2006) Pattern Recogn. Lett. , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 12
    • 33846225279 scopus 로고    scopus 로고
    • Computational studies of human motion: Part 1, tracking and motion synthesis
    • (accessed 29.05.13)
    • Forsyth D.A., et al. Computational studies of human motion: Part 1, tracking and motion synthesis. Found. Trends Comput. Graph. Vis. 2005, 1(2/3):77-254. (accessed 29.05.13).
    • (2005) Found. Trends Comput. Graph. Vis. , vol.1 , Issue.2-3 , pp. 77-254
    • Forsyth, D.A.1
  • 13
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian network classifiers
    • (accessed 07.11.14)
    • Friedman N., Geiger D., Goldszmidt M. Bayesian network classifiers. Mach. Learn. 1997, 29(2-3):131-163. (accessed 07.11.14).
    • (1997) Mach. Learn. , vol.29 , Issue.2-3 , pp. 131-163
    • Friedman, N.1    Geiger, D.2    Goldszmidt, M.3
  • 14
    • 33846638203 scopus 로고    scopus 로고
    • Multi-cue pedestrian detection and tracking from a moving vehicle
    • (accessed 30.05.13)
    • Gavrila D.M., Munder S. Multi-cue pedestrian detection and tracking from a moving vehicle. Int. J. Comput. Vis. 2006, 73(1):41-59. (accessed 30.05.13).
    • (2006) Int. J. Comput. Vis. , vol.73 , Issue.1 , pp. 41-59
    • Gavrila, D.M.1    Munder, S.2
  • 15
    • 1842585216 scopus 로고    scopus 로고
    • Surrogate safety measures from traffic simulation models
    • (accessed 19.07.12)
    • Gettman D., Head L. Surrogate safety measures from traffic simulation models. Transport. Res. Rec. 2003, 1840(1):104-115. (accessed 19.07.12).
    • (2003) Transport. Res. Rec. , vol.1840 , Issue.1 , pp. 104-115
    • Gettman, D.1    Head, L.2
  • 16
    • 17444386367 scopus 로고    scopus 로고
    • Type classification, color estimation, and specific target detection of moving targets on public streets
    • (accessed 25.07.13)
    • Hasegawa O., Kanade T. Type classification, color estimation, and specific target detection of moving targets on public streets. Mach. Vis. Appl. 2005, 16(2):116-121. (accessed 25.07.13).
    • (2005) Mach. Vis. Appl. , vol.16 , Issue.2 , pp. 116-121
    • Hasegawa, O.1    Kanade, T.2
  • 17
    • 0030164799 scopus 로고    scopus 로고
    • Discriminant adaptive nearest neighbor classification
    • (accessed 24.07.13)
    • Hastie T., Tibshirani R. Discriminant adaptive nearest neighbor classification. IEEE Trans. Pattern Anal. Mach. Intell. 1996, 18(6):607-616. (accessed 24.07.13).
    • (1996) IEEE Trans. Pattern Anal. Mach. Intell. , vol.18 , Issue.6 , pp. 607-616
    • Hastie, T.1    Tibshirani, R.2
  • 18
    • 33746632635 scopus 로고    scopus 로고
    • Automatic traffic surveillance system for vehicle tracking and classification
    • (accessed 25.07.13)
    • Hsieh J.-W., et al. Automatic traffic surveillance system for vehicle tracking and classification. IEEE Trans. Intell. Transport. Syst. 2006, 7(2):175-187. (accessed 25.07.13).
    • (2006) IEEE Trans. Intell. Transport. Syst. , vol.7 , Issue.2 , pp. 175-187
    • Hsieh, J.-W.1
  • 20
    • 84894240054 scopus 로고    scopus 로고
    • Automated collection of pedestrian data using computer vision techniques
    • (accessed 07.12.12).
    • Ismail, K., Sayed, T., Saunier, N., 2009a. Automated collection of pedestrian data using computer vision techniques. Transportation Research Board Annual Meeting. (accessed 07.12.12). http://nicolas.saunier.confins.net/stock/ismail09automated.pdf.
    • (2009) Transportation Research Board Annual Meeting
    • Ismail, K.1    Sayed, T.2    Saunier, N.3
  • 21
    • 84896925695 scopus 로고    scopus 로고
    • Automated pedestrian safety analysis using video data in the context of scramble phase intersections
    • (accessed 07.12.12).
    • Ismail, K., Sayed, T., Saunier, N., 2009b. Automated pedestrian safety analysis using video data in the context of scramble phase intersections. Annual Conference of the Transportation Association of Canada. (accessed 07.12.12). http://n.saunier.free.fr/saunier/stock/ismail09automated-tac.pdf.
    • (2009) Annual Conference of the Transportation Association of Canada
    • Ismail, K.1    Sayed, T.2    Saunier, N.3
  • 22
    • 76749169512 scopus 로고    scopus 로고
    • Automated analysis of pedestrian-vehicle conflicts using video data
    • (accessed 18.07.12)
    • Ismail K., Sayed T., Saunier N., et al. Automated analysis of pedestrian-vehicle conflicts using video data. Transport. Res. Rec.: J. Transport. Res. Board 2009, 2140:44-54. (accessed 18.07.12).
    • (2009) Transport. Res. Rec.: J. Transport. Res. Board , vol.2140 , pp. 44-54
    • Ismail, K.1    Sayed, T.2    Saunier, N.3
  • 23
    • 79951525517 scopus 로고    scopus 로고
    • Automated analysis of pedestrian-vehicle conflicts context for before-and-after studies
    • (accessed 20.04.12)
    • Ismail K., Sayed T., Saunier N. Automated analysis of pedestrian-vehicle conflicts context for before-and-after studies. Transport. Res. Rec.: J. Transport. Res. Board 2010, 2198:52-64. (accessed 20.04.12).
    • (2010) Transport. Res. Rec.: J. Transport. Res. Board , vol.2198 , pp. 52-64
    • Ismail, K.1    Sayed, T.2    Saunier, N.3
  • 24
    • 40349116320 scopus 로고    scopus 로고
    • Real-time incremental segmentation and tracking of vehicles at low camera angles using stable features
    • (accessed 25.07.13)
    • Kanhere N., Birchfield S. Real-time incremental segmentation and tracking of vehicles at low camera angles using stable features. IEEE Trans. Intell. Transport. Syst. 2008, 9(1):148-160. (accessed 25.07.13).
    • (2008) IEEE Trans. Intell. Transport. Syst. , vol.9 , Issue.1 , pp. 148-160
    • Kanhere, N.1    Birchfield, S.2
  • 26
    • 85029856055 scopus 로고    scopus 로고
    • Traffic Detector Handbook, third ed.
    • Klein, L.A., Mills, M.K., Gibson, D.R.P., 2006. Traffic Detector Handbook, third ed., vol. I.
    • (2006) , vol.1
    • Klein, L.A.1    Mills, M.K.2    Gibson, D.R.P.3
  • 28
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • (accessed 21.05.13)
    • Lowe D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60(2):91-110. (accessed 21.05.13).
    • (2004) Int. J. Comput. Vis. , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 29
    • 27844602071 scopus 로고    scopus 로고
    • A computer vision system for the detection and classification of vehicles at urban road intersections
    • (accessed 25.07.13)
    • Messelodi S., Modena C.M., Zanin M. A computer vision system for the detection and classification of vehicles at urban road intersections. Pattern Anal. Appl. 2005, 8(1-2):17-31. (accessed 25.07.13).
    • (2005) Pattern Anal. Appl. , vol.8 , Issue.1-2 , pp. 17-31
    • Messelodi, S.1    Modena, C.M.2    Zanin, M.3
  • 30
    • 84855213571 scopus 로고    scopus 로고
    • Disaggregate exposure measures and injury frequency models of cyclist safety at signalized intersections
    • (accessed 24.09.13)
    • Miranda-Moreno L.F., Strauss J., Morency P. Disaggregate exposure measures and injury frequency models of cyclist safety at signalized intersections. Transport. Res. Rec.: J. Transport. Res. Board 2011, 2236:74-82. (accessed 24.09.13).
    • (2011) Transport. Res. Rec.: J. Transport. Res. Board , vol.2236 , pp. 74-82
    • Miranda-Moreno, L.F.1    Strauss, J.2    Morency, P.3
  • 31
    • 84897135705 scopus 로고    scopus 로고
    • Motion prediction methods for surrogate safety analysis
    • (accessed 05.03.14)
    • Mohamed M.G., Saunier N. Motion prediction methods for surrogate safety analysis. Transport. Res. Rec.: J. Transport. Res. Board 2013, 2386:168-178. (accessed 05.03.14).
    • (2013) Transport. Res. Rec.: J. Transport. Res. Board , vol.2386 , pp. 168-178
    • Mohamed, M.G.1    Saunier, N.2
  • 32
    • 50649107683 scopus 로고    scopus 로고
    • Learning, modeling, and classification of vehicle track patterns from live video
    • (accessed 25.07.13)
    • Morris B.T., Trivedi M.M. Learning, modeling, and classification of vehicle track patterns from live video. IEEE Trans. Intell. Transport. Syst. 2008, 9(3):425-437. (accessed 25.07.13).
    • (2008) IEEE Trans. Intell. Transport. Syst. , vol.9 , Issue.3 , pp. 425-437
    • Morris, B.T.1    Trivedi, M.M.2
  • 33
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • (accessed 22.05.13)
    • Ojala T., Pietikainen M., Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24(7):971-987. (accessed 22.05.13).
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.7 , pp. 971-987
    • Ojala, T.1    Pietikainen, M.2    Maenpaa, T.3
  • 34
    • 33845355035 scopus 로고    scopus 로고
    • A feature-based tracking algorithm for vehicles in intersections
    • 59-59, (accessed 22.07.13).
    • Saunier, N., Sayed, T., 2006. A feature-based tracking algorithm for vehicles in intersections. In: The 3rd Canadian Conference on Computer and Robot Vision (CRV'06), pp. 59-59. (accessed 22.07.13). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1640414.
    • (2006) In: The 3rd Canadian Conference on Computer and Robot Vision (CRV'06
    • Saunier, N.1    Sayed, T.2
  • 35
    • 78651323106 scopus 로고    scopus 로고
    • Large-scale automated analysis of vehicle interactions and collisions
    • (accessed 28.07.13)
    • Saunier N., Sayed T., Ismail K. Large-scale automated analysis of vehicle interactions and collisions. Transport. Res. Rec.: J. Transport. Res. Board 2010, 2147:42-50. (accessed 28.07.13).
    • (2010) Transport. Res. Rec.: J. Transport. Res. Board , vol.2147 , pp. 42-50
    • Saunier, N.1    Sayed, T.2    Ismail, K.3
  • 36
    • 84857846325 scopus 로고    scopus 로고
    • Estimation of frequency and length of pedestrian stride in urban environments with video sensors
    • (accessed 09.07.13)
    • Saunier N., et al. Estimation of frequency and length of pedestrian stride in urban environments with video sensors. Transport. Res. Rec.: J. Transport. Res. Board 2011, 2264(1):138-147. (accessed 09.07.13).
    • (2011) Transport. Res. Rec.: J. Transport. Res. Board , vol.2264 , Issue.1 , pp. 138-147
    • Saunier, N.1
  • 37
    • 84927771982 scopus 로고    scopus 로고
    • (accessed 01.04.13).
    • Saunier, N., n.d. Traffic Intelligence. (accessed 01.04.13). https://bitbucket.org/Nicolas/trafficintelligence/.
    • Traffic Intelligence
    • Saunier, N.1
  • 39
    • 84879289319 scopus 로고    scopus 로고
    • Classification and counting of composite objects in traffic scenes using global and local image analysis
    • (accessed 26.07.13)
    • Somasundaram G., et al. Classification and counting of composite objects in traffic scenes using global and local image analysis. IEEE Trans. Intell. Transport. Syst. 2013, 14(1):69-81. (accessed 26.07.13).
    • (2013) IEEE Trans. Intell. Transport. Syst. , vol.14 , Issue.1 , pp. 69-81
    • Somasundaram, G.1
  • 40
    • 84885467828 scopus 로고    scopus 로고
    • An automated surrogate safety analysis at protected highway ramps using cross-sectional and before-after video data
    • (accessed 23.01.14)
    • St-Aubin P., Miranda-Moreno L., Saunier N. An automated surrogate safety analysis at protected highway ramps using cross-sectional and before-after video data. Transport. Res. Part C: Emerg. Technol. 2013, 36:284-295. (accessed 23.01.14).
    • (2013) Transport. Res. Part C: Emerg. Technol. , vol.36 , pp. 284-295
    • St-Aubin, P.1    Miranda-Moreno, L.2    Saunier, N.3
  • 41
    • 84878705595 scopus 로고    scopus 로고
    • Cyclist activity and injury risk analysis at signalized intersections: a bayesian modeling approach
    • (accessed 23.05.13)
    • Strauss J., Miranda-Moreno L.F., Morency P. Cyclist activity and injury risk analysis at signalized intersections: a bayesian modeling approach. Accid. Anal. Prevent. 2013, 59:9-17. (accessed 23.05.13).
    • (2013) Accid. Anal. Prevent. , vol.59 , pp. 9-17
    • Strauss, J.1    Miranda-Moreno, L.F.2    Morency, P.3
  • 42
    • 77949875753 scopus 로고    scopus 로고
    • DAISY: an efficient dense descriptor applied to wide-baseline stereo
    • (accessed 12.06.13)
    • Tola E., Lepetit V., Fua P. DAISY: an efficient dense descriptor applied to wide-baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32(5):815-830. (accessed 12.06.13).
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.5 , pp. 815-830
    • Tola, E.1    Lepetit, V.2    Fua, P.3
  • 43
    • 0000243355 scopus 로고
    • Learning in artificial neural networks: a statistical perspective
    • (accessed 24.07.13)
    • White H. Learning in artificial neural networks: a statistical perspective. Neural Comput. 1989, 1(4):425-464. (accessed 24.07.13).
    • (1989) Neural Comput. , vol.1 , Issue.4 , pp. 425-464
    • White, H.1
  • 44
    • 33846013241 scopus 로고    scopus 로고
    • Object tracking
    • (accessed 21.05.13)
    • Yilmaz A., Javed O., Shah M. Object tracking. ACM Comput. Surv. 2006, 38(4):13-es. (accessed 21.05.13).
    • (2006) ACM Comput. Surv. , vol.38 , Issue.4 , pp. 13-es
    • Yilmaz, A.1    Javed, O.2    Shah, M.3
  • 45
    • 84878829665 scopus 로고    scopus 로고
    • A framework for automated road-users classification using movement trajectories
    • (accessed 26.07.13)
    • Zaki M.H., Sayed T. A framework for automated road-users classification using movement trajectories. Transport. Res. Part C: Emerg. Technol. 2013, 33:50-73. (accessed 26.07.13).
    • (2013) Transport. Res. Part C: Emerg. Technol. , vol.33 , pp. 50-73
    • Zaki, M.H.1    Sayed, T.2
  • 46
    • 48149109796 scopus 로고    scopus 로고
    • Real-time moving object classification with automatic scene division
    • (accessed 01.08.13).
    • Zhang, Z. et al., 2007. Real-time moving object classification with automatic scene division. In: 2007 IEEE International Conference on Image Processing, pp. 149-152. (accessed 01.08.13). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4379787.
    • (2007) In: 2007 IEEE International Conference on Image Processing , pp. 149-152
    • Zhang, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.