메뉴 건너뛰기




Volumn 10, Issue 2, 2015, Pages 156-160

Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions

Author keywords

[No Author keywords available]

Indexed keywords

CALCULATIONS; ELECTRONIC STRUCTURE; ENERGY CONVERSION; ENERGY GAP; FIELD EFFECT TRANSISTORS; HETEROJUNCTIONS; MOLECULES; NANORIBBONS; RESONANT TUNNELING; SCANNING TUNNELING MICROSCOPY; SOLAR ENERGY;

EID: 84926076568     PISSN: 17483387     EISSN: 17483395     Source Type: Journal    
DOI: 10.1038/nnano.2014.307     Document Type: Article
Times cited : (477)

References (30)
  • 1
    • 0016072199 scopus 로고
    • Resonant tunnelling in semiconductor double barriers
    • Chang, L. L., Esaki, L. & Tsu, R. Resonant tunnelling in semiconductor double barriers. Appl. Phys. Lett. 24, 593 (1974
    • (1974) Appl. Phys. Lett , vol.24 , pp. 593
    • Chang, L.L.1    Esaki, L.2    Tsu, R.3
  • 2
    • 84880788348 scopus 로고    scopus 로고
    • Silicon quantum electronics
    • Zwanenburg, F. A., et al. Silicon quantum electronics. Rev. Mod. Phys. 85, 961-1019 (2013
    • (2013) Rev. Mod. Phys , vol.85 , pp. 961-1019
    • Zwanenburg, F.A.1
  • 4
    • 66749128390 scopus 로고    scopus 로고
    • Current-matched triple-junction solar cell reaching 41.1%conversion efficiency under concentrated sunlight
    • Guter, W., et al. Current-matched triple-junction solar cell reaching 41.1%conversion efficiency under concentrated sunlight. Appl. Phys. Lett. 94, 223504 (2009
    • (2009) Appl. Phys. Lett , vol.94 , pp. 223504
    • Guter, W.1
  • 5
    • 33646900503 scopus 로고    scopus 로고
    • Device scaling limits of si mosfets and their application dependencies
    • Frank, D. J., et al. Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259-288 (2001
    • (2001) Proc IEEE , vol.89 , pp. 259-288
    • Frank, D.J.1
  • 6
    • 77955231284 scopus 로고    scopus 로고
    • Graphene transistors
    • Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487-496 (2010
    • (2010) Nature Nanotech , vol.5 , pp. 487-496
    • Schwierz, F.1
  • 7
    • 84879627381 scopus 로고    scopus 로고
    • Suppression of electron-vibron coupling in graphene nanoribbons contacted via a single atom
    • Van der Lit, J., et al. Suppression of electron-vibron coupling in graphene nanoribbons contacted via a single atom. Nature Commun. 4, 2023 (2013
    • (2013) Nature Commun , vol.4 , pp. 2023
    • Van Der Lit, J.1
  • 8
    • 84891438260 scopus 로고    scopus 로고
    • Bottom-up graphene nanoribbon field-effect transistors
    • Bennett, P. B., et al. Bottom-up graphene nanoribbon field-effect transistors. Appl. Phys. Lett. 103, 253114 (2013
    • (2013) Appl. Phys. Lett , vol.103 , pp. 253114
    • Bennett, P.B.1
  • 9
    • 84859150664 scopus 로고    scopus 로고
    • Intraribbon heterojunction formation in ultranarrow graphene nanoribbons
    • Blankenburg, S., et al. Intraribbon heterojunction formation in ultranarrow graphene nanoribbons. ACS Nano 6, 2020-2025 (2012
    • (2012) ACS Nano , vol.6 , pp. 2020-2025
    • Blankenburg, S.1
  • 10
    • 84876246261 scopus 로고    scopus 로고
    • Aligning the band gap of graphene nanoribbons by monomer doping
    • Bronner, C., et al. Aligning the band gap of graphene nanoribbons by monomer doping. Angew. Chem. Int. Ed. 52, 4422-4425 (2013
    • (2013) Angew. Chem. Int. Ed. , vol.52 , pp. 4422-4425
    • Bronner, C.1
  • 11
    • 77954904482 scopus 로고    scopus 로고
    • Atomically precise bottom-up fabrication of graphene nanoribbons
    • Cai, J., et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470-473 (2010
    • (2010) Nature , vol.466 , pp. 470-473
    • Cai, J.1
  • 12
    • 84880782130 scopus 로고    scopus 로고
    • Tuning the band gap of graphene nanoribbons synthesized from molecular precursors
    • Chen, Y-C., et al. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 7, 6123-6128 (2013
    • (2013) ACS Nano , vol.7 , pp. 6123-6128
    • Chen, Y.-C.1
  • 13
    • 34547334459 scopus 로고    scopus 로고
    • Energy band-gap engineering of graphene nanoribbons
    • Han, M., Özyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007
    • (2007) Phys. Rev. Lett , vol.98 , pp. 206805
    • Han, M.1    Özyilmaz, B.2    Zhang, Y.3    Kim, P.4
  • 14
    • 84869062823 scopus 로고    scopus 로고
    • Voltage-dependent conductance of a single graphene nanoribbon
    • Koch, M., Ample, F., Joachim, C. & Grill, L. Voltage-dependent conductance of a single graphene nanoribbon. Nature Nanotech. 7, 713-717 (2012
    • (2012) Nature Nanotech , vol.7 , pp. 713-717
    • Koch, M.1    Ample, F.2    Joachim, C.3    Grill, L.4
  • 15
    • 40049093097 scopus 로고    scopus 로고
    • Chemically derived, ultrasmooth graphene nanoribbon semiconductors
    • Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229-1232 (2008
    • (2008) Science , vol.319 , pp. 1229-1232
    • Li, X.1    Wang, X.2    Zhang, L.3    Lee, S.4    Dai, H.5
  • 16
    • 84861616472 scopus 로고    scopus 로고
    • Electronic structure of spatially aligned graphene nanoribbons on au(788
    • Linden, S., et al. Electronic structure of spatially aligned graphene nanoribbons on Au(788). Phys. Rev. Lett. 108, 216801 (2012
    • (2012) Phys. Rev. Lett. , vol.108 , pp. 216801
    • Linden, S.1
  • 17
    • 84865581204 scopus 로고    scopus 로고
    • Electronic structure of atomically precise graphene nanoribbons
    • Ruffieux, P., et al. Electronic structure of atomically precise graphene nanoribbons. ACS Nano 6, 6930-6935 (2012
    • (2012) ACS Nano , vol.6 , pp. 6930-6935
    • Ruffieux, P.1
  • 18
    • 0000781318 scopus 로고    scopus 로고
    • Edge state in graphene ribbons: Nanometer size effect and edge shape dependence
    • Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 017954 (1996
    • (1996) Phys. Rev , vol.B54 , pp. 017954
    • Nakada, K.1    Fujita, M.2    Dresselhaus, G.3    Dresselhaus, M.S.4
  • 19
  • 20
    • 79961225561 scopus 로고    scopus 로고
    • Quantum dot states and optical excitations of edge-modulated graphene nanoribbons
    • Prezzi, D., Varsano, D., Ruini, A. & Molinari, E. Quantum dot states and optical excitations of edge-modulated graphene nanoribbons. Phys. Rev. B 84, 041401(R) (2011
    • (2011) Phys. Rev , vol.B84 , pp. 041401R
    • Prezzi, D.1    Varsano, D.2    Ruini, A.3    Molinari, E.4
  • 21
    • 57749097543 scopus 로고    scopus 로고
    • Superlattice structures of graphene-based armchair nanoribbons
    • Sevinçli, H., Topsakal, M. & Ciraci, S. Superlattice structures of graphene-based armchair nanoribbons. Phys. Rev. B 78, 245402 (2008
    • (2008) Phys. Rev , vol.B78 , pp. 245402
    • Sevinçli, H.1    Topsakal, M.2    Ciraci, S.3
  • 22
    • 34249893624 scopus 로고    scopus 로고
    • Elementary building blocks of graphenenanoribbon-based electronic devices
    • Xu, Z., Zheng, Q-S. & Chen, G. Elementary building blocks of graphenenanoribbon-based electronic devices. Appl. Phys. Lett. 90, 223115 (2007
    • (2007) Appl. Phys. Lett , vol.90 , pp. 223115
    • Xu, Z.1    Zheng, Q.-S.2    Chen, G.3
  • 23
    • 80051696983 scopus 로고    scopus 로고
    • Covalent networks through on-surface chemistry in ultra-high vacuum: State-of-The-Art and recent developments
    • Franc, G. & Gourdon, A. Covalent networks through on-surface chemistry in ultra-high vacuum: state-of-The-Art and recent developments. Phys. Chem. Chem. Phys. 13, 14283-14292 (2011
    • (2011) Phys. Chem. Chem. Phys , vol.13 , pp. 14283-14292
    • Franc, G.1    Gourdon, A.2
  • 24
    • 84884508546 scopus 로고    scopus 로고
    • Electronic states in finite graphene nanoribbons: Effect of charging and defects
    • Ijäs, M., et al. Electronic states in finite graphene nanoribbons: effect of charging and defects. Phys. Rev. B 88, 075429 (2013
    • (2013) Phys. Rev , vol.B88 , pp. 075429
    • Ijäs, M.1
  • 25
    • 36849016335 scopus 로고    scopus 로고
    • Edge effects in finite elongated graphene nanoribbons
    • Hod, O., Peralta, J. & Scuseria, G. Edge effects in finite elongated graphene nanoribbons. Phys. Rev. B 76, 233401 (2007
    • (2007) Phys. Rev , vol.B76 , pp. 233401
    • Hod, O.1    Peralta, J.2    Scuseria, G.3
  • 26
    • 84909945643 scopus 로고    scopus 로고
    • Graphene nanoribbon heterojunctions
    • Cai, J., et al. Graphene nanoribbon heterojunctions. Nature Nanotech. 9, 896-900 (2014
    • (2014) Nature Nanotech , vol.9 , pp. 896-900
    • Cai, J.1
  • 27
    • 34047109564 scopus 로고    scopus 로고
    • Wsxm: A software for scanning probe microscopy and a tool for nanotechnology
    • Horcas, I., et al. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007
    • (2007) Rev. Sci. Instrum , vol.78 , pp. 013705
    • Horcas, I.1
  • 28
    • 70349568754 scopus 로고    scopus 로고
    • Quantum espresso: A modular and open-source software project for quantum simulations of materials
    • Giannozzi, P., et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009
    • (2009) J. Phys. Condens. Matter , vol.21 , pp. 395502
    • Giannozzi, P.1
  • 29
    • 0001590421 scopus 로고
    • Self-consistent pseudopotential method for localized configurations: Molecules
    • Cohen, M. L., Schlüter, M., Chelikowsky, J. R. & Louie, S. G. Self-consistent pseudopotential method for localized configurations: Molecules. Phys. Rev. B 12, 5575-5579 (1975
    • (1975) Phys. Rev , vol.B12 , pp. 5575-5579
    • Cohen, M.L.1    Schlüter, M.2    Chelikowsky, J.R.3    Louie, S.G.4
  • 30
    • 33645426115 scopus 로고
    • Efficient pseudopotentials for plane-wave calculations
    • Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993-2006 (1991
    • (1991) Phys. Rev , vol.B43 , pp. 1993-2006
    • Troullier, N.1    Martins, J.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.