메뉴 건너뛰기




Volumn 6, Issue 3, 2012, Pages 2020-2025

Intraribbon heterojunction formation in ultranarrow graphene nanoribbons

Author keywords

computational nanotechnology; graphene nanoribbon; heterojunction; molecular self assembly; nanoscale materials; synthesis and processing

Indexed keywords

ATOMIC PRECISION; ATOMISTIC SIMULATIONS; AU(111) SURFACES; CHEMICAL ROUTES; COMPUTATIONAL NANOTECHNOLOGY; DEHYDROGENATION REACTIONS; EDGE STRUCTURES; ELECTRONIC DEVICE; ETCHING TECHNIQUE; FABRICATION TECHNIQUE; GRAPHENE NANO-RIBBON; GRAPHENE NANORIBBONS; LATERAL DIMENSION; MICROSCOPIC MECHANISMS; MOLECULAR PRECURSOR; MOLECULAR SELF ASSEMBLY; NANO-SCALE MATERIALS; NANORIBBONS; QUANTUM TRANSPORT; QUASI-ONE-DIMENSIONAL; SCANNING TUNNELING MICROSCOPES; SELF-ASSEMBLED;

EID: 84859150664     PISSN: 19360851     EISSN: 1936086X     Source Type: Journal    
DOI: 10.1021/nn203129a     Document Type: Article
Times cited : (181)

References (39)
  • 1
    • 77957059190 scopus 로고    scopus 로고
    • Novel Properties of Graphene Nanoribbons: A Review
    • Dutta, S.; Pati, S. K. Novel Properties of Graphene Nanoribbons: A Review J. Mater. Chem. 2010, 20, 8207-8223
    • (2010) J. Mater. Chem. , vol.20 , pp. 8207-8223
    • Dutta, S.1    Pati, S.K.2
  • 2
    • 33144487433 scopus 로고    scopus 로고
    • Peculiar Width Dependence of the Electronic Properties of Carbon Nanoribbons
    • Ezawa, M. Peculiar Width Dependence of the Electronic Properties of Carbon Nanoribbons Phys. Rev. B 2006, 73, 045432
    • (2006) Phys. Rev. B , vol.73 , pp. 045432
    • Ezawa, M.1
  • 5
    • 33751110207 scopus 로고    scopus 로고
    • Half Metallic Graphene Nanoribbons
    • Son, Y.-W.; Cohen, M. L.; Louie, S. G. Half Metallic Graphene Nanoribbons Nature 2006, 444, 347-349
    • (2006) Nature , vol.444 , pp. 347-349
    • Son, Y.-W.1    Cohen, M.L.2    Louie, S.G.3
  • 6
    • 0000781318 scopus 로고    scopus 로고
    • Edge State in Graphene Nanoribbons: Nanometer Size Effect and Edge Shape Dependence
    • Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Edge State in Graphene Nanoribbons: Nanometer Size Effect and Edge Shape Dependence Phys. Rev. B 1996, 54, 17954-17961
    • (1996) Phys. Rev. B , vol.54 , pp. 17954-17961
    • Nakada, K.1    Fujita, M.2    Dresselhaus, G.3    Dresselhaus, M.S.4
  • 7
    • 33846361065 scopus 로고    scopus 로고
    • Electronic Structure and Stability of Semiconducting Graphene Nanoribbons
    • Barone, V.; Hod, O.; Scuseria, G. E. Electronic Structure and Stability of Semiconducting Graphene Nanoribbons Nano Lett. 2006, 6, 2748-2754
    • (2006) Nano Lett. , vol.6 , pp. 2748-2754
    • Barone, V.1    Hod, O.2    Scuseria, G.E.3
  • 8
    • 38049091393 scopus 로고    scopus 로고
    • Optical Properties of Graphene Nanoribbons: The Role of Many-Body Effects
    • Prezzi, D.; Varsano, D.; Ruini, A.; Marini, A.; Molinari, E. Optical Properties of Graphene Nanoribbons: The Role of Many-Body Effects Phys. Rev. B 2008, 77, 041404
    • (2008) Phys. Rev. B , vol.77 , pp. 041404
    • Prezzi, D.1    Varsano, D.2    Ruini, A.3    Marini, A.4    Molinari, E.5
  • 10
    • 34547334459 scopus 로고    scopus 로고
    • Energy Band-Gap Engineering of Graphene Nanoribbons
    • Han, M. Y.; Özyilmaz, B.; Zhang, Y.; Kim, P. Energy Band-Gap Engineering of Graphene Nanoribbons Phys. Rev. Lett. 2007, 98, 206805
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 206805
    • Han, M.Y.1    Özyilmaz, B.2    Zhang, Y.3    Kim, P.4
  • 12
    • 62049085404 scopus 로고    scopus 로고
    • Quantum Interference and Klein Tunneling in Graphene Heterojunctions
    • Young, A. F.; Kim, P. Quantum Interference and Klein Tunneling in Graphene Heterojunctions Nat. Phys. 2009, 5, 222-226
    • (2009) Nat. Phys. , vol.5 , pp. 222-226
    • Young, A.F.1    Kim, P.2
  • 15
    • 40049093097 scopus 로고    scopus 로고
    • Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors
    • Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors Science 2008, 319, 1229-1232
    • (2008) Science , vol.319 , pp. 1229-1232
    • Li, X.1    Wang, X.2    Zhang, L.3    Lee, S.4    Dai, H.5
  • 16
    • 77955407236 scopus 로고    scopus 로고
    • Controllable Synthesis of Graphene and its Applications
    • Wei, D.; Liu, Y. Controllable Synthesis of Graphene and its Applications Adv. Mater. 2010, 22, 3225-3241
    • (2010) Adv. Mater. , vol.22 , pp. 3225-3241
    • Wei, D.1    Liu, Y.2
  • 17
  • 19
    • 77957118054 scopus 로고    scopus 로고
    • Electronic Transport in Polycrystalline Graphene
    • Yazyev, O.; Louie, S. Electronic Transport in Polycrystalline Graphene Nat. Mater. 2010, 9, 806-809
    • (2010) Nat. Mater. , vol.9 , pp. 806-809
    • Yazyev, O.1    Louie, S.2
  • 20
    • 79961225561 scopus 로고    scopus 로고
    • Quantum-Dot States and Optical Excitations in Edge-Modulated Graphene Nanoribbons
    • Prezzi, D.; Varsano, D.; Ruini, A.; Molinari, E. Quantum-Dot States and Optical Excitations in Edge-Modulated Graphene Nanoribbons Phys. Rev. B 2011, 84, 041401(R)
    • (2011) Phys. Rev. B , vol.84
    • Prezzi, D.1    Varsano, D.2    Ruini, A.3    Molinari, E.4
  • 21
    • 79959505713 scopus 로고    scopus 로고
    • Design of Graphene-Nanoribbon Heterojunctions from First Principles
    • Li, X.-F.; Wang, L.-L.; Chen, K.-Q.; Luo, Y. Design of Graphene-Nanoribbon Heterojunctions from First Principles J. Phys. Chem. C 2011, 115, 12616-12624
    • (2011) J. Phys. Chem. C , vol.115 , pp. 12616-12624
    • Li, X.-F.1    Wang, L.-L.2    Chen, K.-Q.3    Luo, Y.4
  • 23
    • 79952260890 scopus 로고    scopus 로고
    • Graphene Nanoribbons by Chemists: Nanometer-Sized, Soluble, and Defect-Free
    • Dössel, L.; Gherghel, L.; Feng, X.; Müllen, K. Graphene Nanoribbons by Chemists: Nanometer-Sized, Soluble, and Defect-Free Angew. Chem., Int. Ed. 2011, 50, 2540-2543
    • (2011) Angew. Chem., Int. Ed. , vol.50 , pp. 2540-2543
    • Dössel, L.1    Gherghel, L.2    Feng, X.3    Müllen, K.4
  • 24
    • 70350031229 scopus 로고    scopus 로고
    • Graphitic Nanoribbons with Dibenzo[e,l]pyrene Repeat Units: Synthesis and Self-Assembly
    • Fogel, Y.; Zhi, L.; Rouhanipour, A.; Andrienko, D.; Räder, H. J.; Müllen, K. Graphitic Nanoribbons with Dibenzo[e,l]pyrene Repeat Units: Synthesis and Self-Assembly Macromolecules 2009, 42, 6878-6884
    • (2009) Macromolecules , vol.42 , pp. 6878-6884
    • Fogel, Y.1    Zhi, L.2    Rouhanipour, A.3    Andrienko, D.4    Räder, H.J.5    Müllen, K.6
  • 27
    • 0033576719 scopus 로고    scopus 로고
    • Template-Mediated Synthesis of Polycyclic Aromatic Hydrocarbons: Cyclodehydrogenation and Planarization of a Hexaphenylbenzene Derivative at a Copper Surface
    • Weiss, K.; Beernink, G.; Dötz, F.; Birkner, A.; Müllen, K.; Wöll, C. H. Template-Mediated Synthesis of Polycyclic Aromatic Hydrocarbons: Cyclodehydrogenation and Planarization of a Hexaphenylbenzene Derivative at a Copper Surface Angew. Chem., Int. Ed. 1999, 38, 3748-3752
    • (1999) Angew. Chem., Int. Ed. , vol.38 , pp. 3748-3752
    • Weiss, K.1    Beernink, G.2    Dötz, F.3    Birkner, A.4    Müllen, K.5    Wöll, C.H.6
  • 30
    • 78650329130 scopus 로고    scopus 로고
    • Surface-Assisted Cyclodehydrogenation Provides a Synthetic Route towards Easily Processable and Chemically Tailored Nanographenes
    • Treier, M.; Pignedoli, C. A.; Laino, T.; Rieger, R.; Müllen, K.; Passerone, D.; Fasel, R. Surface-Assisted Cyclodehydrogenation Provides a Synthetic Route towards Easily Processable and Chemically Tailored Nanographenes Nat. Chem. 2011, 3, 61-67
    • (2011) Nat. Chem. , vol.3 , pp. 61-67
    • Treier, M.1    Pignedoli, C.A.2    Laino, T.3    Rieger, R.4    Müllen, K.5    Passerone, D.6    Fasel, R.7
  • 31
    • 80053089184 scopus 로고    scopus 로고
    • Zipping Up: Cooperativity Drives the Synthesis of Graphene Nanoribbons
    • Björk, J.; Stafström, S.; Hanke, F. Zipping Up: Cooperativity Drives the Synthesis of Graphene Nanoribbons J. Am. Chem. Soc. 2011, 133, 14884-14887
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 14884-14887
    • Björk, J.1    Stafström, S.2    Hanke, F.3
  • 32
    • 33947712905 scopus 로고    scopus 로고
    • Graphenes as Potential Material for Electronics
    • Wu, J. S.; Pisula, W.; Müllen, K. Graphenes as Potential Material for Electronics Chem. Rev. 2007, 107, 718-747
    • (2007) Chem. Rev. , vol.107 , pp. 718-747
    • Wu, J.S.1    Pisula, W.2    Müllen, K.3
  • 34
    • 0035825673 scopus 로고    scopus 로고
    • Materials Science: Nanoscale Control of Chain Polymerization
    • Okawa, Y.; Aono, M. Materials Science: Nanoscale Control of Chain Polymerization Nature 2001, 409, 683-684
    • (2001) Nature , vol.409 , pp. 683-684
    • Okawa, Y.1    Aono, M.2
  • 35
    • 50249086276 scopus 로고    scopus 로고
    • Defect-Induced Negative Differential Resistance in Single-Walled Carbon Nanotubes
    • Buchs, G; Ruffieux, P.; Gröning, P.; Gröning, O. Defect-Induced Negative Differential Resistance in Single-Walled Carbon Nanotubes Appl. Phys. Lett. 2008, 93, 73115
    • (2008) Appl. Phys. Lett. , vol.93 , pp. 73115
    • Buchs, G.1    Ruffieux, P.2    Gröning, P.3    Gröning, O.4
  • 36
    • 15344345714 scopus 로고    scopus 로고
    • Quickstep: Fast and Accurate Density Functional Calculations Using a Mixed Gaussian and Plane Waves Approach
    • VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. Quickstep: Fast and Accurate Density Functional Calculations Using a Mixed Gaussian and Plane Waves Approach Comput. Phys. Commun. 2005, 167, 103-128
    • (2005) Comput. Phys. Commun. , vol.167 , pp. 103-128
    • Vandevondele, J.1    Krack, M.2    Mohamed, F.3    Parrinello, M.4    Chassaing, T.5    Hutter, J.6
  • 37
    • 33750559983 scopus 로고    scopus 로고
    • Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction
    • Grimme, S. Semiempirical GGA-Type Density Functional Constructed With a Long-Range Dispersion Correction J. Comput. Chem. 2006, 27, 1787-1799
    • (2006) J. Comput. Chem. , vol.27 , pp. 1787-1799
    • Grimme, S.1
  • 38
    • 33646638059 scopus 로고
    • Pseudopotential Methods in Condensed Matter Applications
    • Pickett, W. E. Pseudopotential Methods in Condensed Matter Applications Comp. Phys. Rep. 1989, 9, 115-198
    • (1989) Comp. Phys. Rep. , vol.9 , pp. 115-198
    • Pickett, W.E.1
  • 39
    • 0034513054 scopus 로고    scopus 로고
    • Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths
    • Henkelman, G.; Uberuaga, B. P.; Jonsson, H. A. Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths J. Chem. Phys. 2000, 113, 9901
    • (2000) J. Chem. Phys. , vol.113 , pp. 9901
    • Henkelman, G.1    Uberuaga, B.P.2    Jonsson, H.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.