-
1
-
-
0003497429
-
-
AACC, St. Paul, MN, USA
-
AACC Approved Methods of the AACC 2000, AACC, St. Paul, MN, USA. 11th ed.
-
(2000)
Approved Methods of the AACC
-
-
-
2
-
-
84879236195
-
Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production
-
Agren R., Otero J., Nielsen J. Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production. J. Ind. Microbiol. Biotechnol. 2013, 40:735-747.
-
(2013)
J. Ind. Microbiol. Biotechnol.
, vol.40
, pp. 735-747
-
-
Agren, R.1
Otero, J.2
Nielsen, J.3
-
4
-
-
0032145406
-
Soluble fumarate reductase isoenzymes from Saccharomyces cerevisiae are required for anaerobic growth
-
Arikawa Y., Enomoto K., Muratsubaki H., Okazaki M. Soluble fumarate reductase isoenzymes from Saccharomyces cerevisiae are required for anaerobic growth. FEMS Microbiol. Lett. 1998, 165:111-116.
-
(1998)
FEMS Microbiol. Lett.
, vol.165
, pp. 111-116
-
-
Arikawa, Y.1
Enomoto, K.2
Muratsubaki, H.3
Okazaki, M.4
-
5
-
-
0032900308
-
Isolation of sake yeast strains possessing various levels of succinate- and/or malate-producing abilities by gene disruption or mutation
-
Arikawa Y., Kobayashi M., Kodaira R., Shimosaka M., Muratsubaki H., Enomoto K., Okazaki M. Isolation of sake yeast strains possessing various levels of succinate- and/or malate-producing abilities by gene disruption or mutation. J. Biosci. Bioeng. 1999, 87:333-339.
-
(1999)
J. Biosci. Bioeng.
, vol.87
, pp. 333-339
-
-
Arikawa, Y.1
Kobayashi, M.2
Kodaira, R.3
Shimosaka, M.4
Muratsubaki, H.5
Enomoto, K.6
Okazaki, M.7
-
6
-
-
0032952709
-
Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae
-
Arikawa Y., Kuroyanagi T., Shimosaka M., Muratsubaki H., Enomoto K., Kodaira R., Okazaki M. Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae. J. Biosci. Bioeng. 1999, 87:28-36.
-
(1999)
J. Biosci. Bioeng.
, vol.87
, pp. 28-36
-
-
Arikawa, Y.1
Kuroyanagi, T.2
Shimosaka, M.3
Muratsubaki, H.4
Enomoto, K.5
Kodaira, R.6
Okazaki, M.7
-
7
-
-
0033199181
-
+-dependent isocitrate dehydrogenase gene (IDH1, IDH2) disruption of sake yeast on organic acid composition in sake mash
-
+-dependent isocitrate dehydrogenase gene (IDH1, IDH2) disruption of sake yeast on organic acid composition in sake mash. J. Biosci. Bioeng. 1999, 88:258-263.
-
(1999)
J. Biosci. Bioeng.
, vol.88
, pp. 258-263
-
-
Asano, T.1
Kurose, N.2
Hiraoka, N.3
Kawakita, S.4
-
8
-
-
84888246933
-
Dynamics of the Saccharomyces cerevisiae transcriptome during bread dough fermentation
-
Aslankoohi E., Zhu B., Rezaei M.N., Voordeckers K., De Maeyer D., Marchal K., Dornez E., Courtin C.M., Verstrepen K.J. Dynamics of the Saccharomyces cerevisiae transcriptome during bread dough fermentation. Appl. Environ. Microbiol. 2013, 79:7325-7333.
-
(2013)
Appl. Environ. Microbiol.
, vol.79
, pp. 7325-7333
-
-
Aslankoohi, E.1
Zhu, B.2
Rezaei, M.N.3
Voordeckers, K.4
De Maeyer, D.5
Marchal, K.6
Dornez, E.7
Courtin, C.M.8
Verstrepen, K.J.9
-
9
-
-
84929484899
-
Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation
-
Aslankoohi E., Rezaei M.N., Courtin C.M., Verstrepen K.J. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation. PLoS One 2015, 10.1371/journal.pone.0119364.
-
(2015)
PLoS One
-
-
Aslankoohi, E.1
Rezaei, M.N.2
Courtin, C.M.3
Verstrepen, K.J.4
-
10
-
-
0141480110
-
13C-NMR and tricarboxylic acid (TCA) deletion mutant analysis of pathways for succinate formation in Saccharomyces cerevisiae during anaerobic fermentation
-
13C-NMR and tricarboxylic acid (TCA) deletion mutant analysis of pathways for succinate formation in Saccharomyces cerevisiae during anaerobic fermentation. Microbiology 2003, 149:2669-2678.
-
(2003)
Microbiology
, vol.149
, pp. 2669-2678
-
-
Camarasa, C.1
Grivet, J.P.2
Dequin, S.3
-
11
-
-
34249677220
-
Role in anaerobiosis of the isoenzymes for Saccharomyces cerevisiae fumarate reductase encoded by OSM1 and FRDS1
-
Camarasa C., Faucet V., Dequin S. Role in anaerobiosis of the isoenzymes for Saccharomyces cerevisiae fumarate reductase encoded by OSM1 and FRDS1. Yeast 2007, 24:391-401.
-
(2007)
Yeast
, vol.24
, pp. 391-401
-
-
Camarasa, C.1
Faucet, V.2
Dequin, S.3
-
12
-
-
0014267745
-
The kinetics of enzyme changes in yeast under conditions that cause the loss of mitochondria
-
Chapman C., Bartley W. The kinetics of enzyme changes in yeast under conditions that cause the loss of mitochondria. Biochem. J. 1968, 107:455-465.
-
(1968)
Biochem. J.
, vol.107
, pp. 455-465
-
-
Chapman, C.1
Bartley, W.2
-
13
-
-
0014559421
-
Studies on the regulation and localization of the glyoxylate cycle enzymes in Saccharomyces cerevisiae
-
Dduntze W., Neumann D., Atzpodien W., Holzer H., Gancedo J.M. Studies on the regulation and localization of the glyoxylate cycle enzymes in Saccharomyces cerevisiae. Eur. J. Biochem. 1969, 10:83-89.
-
(1969)
Eur. J. Biochem.
, vol.10
, pp. 83-89
-
-
Dduntze, W.1
Neumann, D.2
Atzpodien, W.3
Holzer, H.4
Gancedo, J.M.5
-
14
-
-
0030608184
-
Cloning and sequencing of the gene encoding the soluble fumarate reductase from Saccharomyces cerevisiae
-
Enomoto K., Ohki R., Muratsubaki H. Cloning and sequencing of the gene encoding the soluble fumarate reductase from Saccharomyces cerevisiae. DNA Res. 1996, 3:263-267.
-
(1996)
DNA Res.
, vol.3
, pp. 263-267
-
-
Enomoto, K.1
Ohki, R.2
Muratsubaki, H.3
-
16
-
-
0025336743
-
Molecular cloning of the yeast mitochondrial aconitase gene (ACO1) and evidence of a synergistic regulation of expression by glucose plus glutamate
-
Gangloff S.P., Marguet D., Lauquin G.J. Molecular cloning of the yeast mitochondrial aconitase gene (ACO1) and evidence of a synergistic regulation of expression by glucose plus glutamate. Mol. Cell. Biol. 1990, 10:3551-3561.
-
(1990)
Mol. Cell. Biol.
, vol.10
, pp. 3551-3561
-
-
Gangloff, S.P.1
Marguet, D.2
Lauquin, G.J.3
-
17
-
-
33644792045
-
Yeast transformation by the LiAc/SS carrier DNA/PEG method
-
Gietz R.D., Woods R.A. Yeast transformation by the LiAc/SS carrier DNA/PEG method. Methods Mol. Biol. 2006, 313:107-120.
-
(2006)
Methods Mol. Biol.
, vol.313
, pp. 107-120
-
-
Gietz, R.D.1
Woods, R.A.2
-
18
-
-
0027310324
-
Function and expression of yeast mitochondrial NAD- and NADP-specific isocitrate dehydrogenases
-
Haselbeck R.J., McAlister-Henn L. Function and expression of yeast mitochondrial NAD- and NADP-specific isocitrate dehydrogenases. J. Biol. Chem. 1993, 268:12116-12122.
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 12116-12122
-
-
Haselbeck, R.J.1
McAlister-Henn, L.2
-
19
-
-
0029848561
-
Molecular genetics of ICL2, encoding a non-functional isocitrate lyase in Saccharomyces cerevisiae
-
Heinisch J.J., Valdes E., Alvarez J., Rodicio R. Molecular genetics of ICL2, encoding a non-functional isocitrate lyase in Saccharomyces cerevisiae. Yeast 1996, 12:1285-1295.
-
(1996)
Yeast
, vol.12
, pp. 1285-1295
-
-
Heinisch, J.J.1
Valdes, E.2
Alvarez, J.3
Rodicio, R.4
-
20
-
-
84866721628
-
Mapping of Saccharomyces cerevisiae metabolites in fermenting wheat straight-dough reveals succinic acid as pH-determining factor
-
Jayaram V.B., Cuyvers S., Lagrain B., Verstrepen K.J., Delcour J.A., Courtin C.M. Mapping of Saccharomyces cerevisiae metabolites in fermenting wheat straight-dough reveals succinic acid as pH-determining factor. Food Chem. 2013, 136:301-308.
-
(2013)
Food Chem.
, vol.136
, pp. 301-308
-
-
Jayaram, V.B.1
Cuyvers, S.2
Lagrain, B.3
Verstrepen, K.J.4
Delcour, J.A.5
Courtin, C.M.6
-
21
-
-
84890186216
-
Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties
-
Jayaram V.B., Cuyvers S., Verstrepen K.J., Delcour J.A., Courtin C.M. Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties. Food Chem. 2014, 151:421-428.
-
(2014)
Food Chem.
, vol.151
, pp. 421-428
-
-
Jayaram, V.B.1
Cuyvers, S.2
Verstrepen, K.J.3
Delcour, J.A.4
Courtin, C.M.5
-
22
-
-
84861595678
-
Monitoring molecular oxygen depletion in wheat flour dough using Erythrosin B phosphorescence: a biophysical approach
-
Joye I.J., Draganski A., Delcour J.A., Ludescher R.D. Monitoring molecular oxygen depletion in wheat flour dough using Erythrosin B phosphorescence: a biophysical approach. Food Biophys. 2012, 7:138-144.
-
(2012)
Food Biophys.
, vol.7
, pp. 138-144
-
-
Joye, I.J.1
Draganski, A.2
Delcour, J.A.3
Ludescher, R.D.4
-
23
-
-
0034507458
-
Effect of gene disruption of succinate dehydrogenase on succinate production in a sake yeast strain
-
Kubo Y., Takagi H., Nakamori S. Effect of gene disruption of succinate dehydrogenase on succinate production in a sake yeast strain. J. Biosci. Bioeng. 2000, 90:619-624.
-
(2000)
J. Biosci. Bioeng.
, vol.90
, pp. 619-624
-
-
Kubo, Y.1
Takagi, H.2
Nakamori, S.3
-
24
-
-
0034461448
-
The Saccharomyces cerevisiae ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme A metabolism
-
Luttik M.A., Kotter P., Salomons F.A., van der Klei I.J., van Dijken J.P., Pronk J.T. The Saccharomyces cerevisiae ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme A metabolism. J. Bacteriol. 2000, 182:7007-7013.
-
(2000)
J. Bacteriol.
, vol.182
, pp. 7007-7013
-
-
Luttik, M.A.1
Kotter, P.2
Salomons, F.A.3
van der Klei, I.J.4
van Dijken, J.P.5
Pronk, J.T.6
-
25
-
-
0028827364
-
Effect of yeast fumarase gene (FUM1) disruption on production of malic, fumaric and succinic acids in sake mash
-
Magarifuchi T., Goto K., Iimura Y., Tadenuma M., Tamura G. Effect of yeast fumarase gene (FUM1) disruption on production of malic, fumaric and succinic acids in sake mash. J. Ferment. Bioeng. 1995, 80:355-361.
-
(1995)
J. Ferment. Bioeng.
, vol.80
, pp. 355-361
-
-
Magarifuchi, T.1
Goto, K.2
Iimura, Y.3
Tadenuma, M.4
Tamura, G.5
-
26
-
-
0005924611
-
Dough development for breadmaking under controlled atmospheres
-
Marston P.E. Dough development for breadmaking under controlled atmospheres. J. Cereal Sci. 1986, 4:335-344.
-
(1986)
J. Cereal Sci.
, vol.4
, pp. 335-344
-
-
Marston, P.E.1
-
27
-
-
0032522152
-
One of the fumarate reductase isoenzymes from Saccharomyces cerevisiae is encoded by the OSM1 gene
-
Muratsubaki H., Enomoto K. One of the fumarate reductase isoenzymes from Saccharomyces cerevisiae is encoded by the OSM1 gene. Arch. Biochem. Biophys. 1998, 352:175-181.
-
(1998)
Arch. Biochem. Biophys.
, vol.352
, pp. 175-181
-
-
Muratsubaki, H.1
Enomoto, K.2
-
28
-
-
0348191348
-
Use of the range to estimate variability
-
Nelson L.S. Use of the range to estimate variability. J. Qual. Technol. 1975, 7:46-48.
-
(1975)
J. Qual. Technol.
, vol.7
, pp. 46-48
-
-
Nelson, L.S.1
-
29
-
-
0032904532
-
The mitochondrial dicarboxylate carrier is essential for the growth of Saccharomyces cerevisiae on ethanol or acetate as the sole carbon source
-
Palmieri L., Vozza A., Honlinger A., Dietmeier K., Palmisano A., Zara V., Palmieri F. The mitochondrial dicarboxylate carrier is essential for the growth of Saccharomyces cerevisiae on ethanol or acetate as the sole carbon source. Mol. Microbiol. 1999, 31:569-577.
-
(1999)
Mol. Microbiol.
, vol.31
, pp. 569-577
-
-
Palmieri, L.1
Vozza, A.2
Honlinger, A.3
Dietmeier, K.4
Palmisano, A.5
Zara, V.6
Palmieri, F.7
-
30
-
-
0016157810
-
Derepression of mitochondria and their enzymes in yeast: regulatory aspects
-
Perlman P.S., Mahler H.R. Derepression of mitochondria and their enzymes in yeast: regulatory aspects. Arch. Biochem. Biophys. 1974, 162:248-271.
-
(1974)
Arch. Biochem. Biophys.
, vol.162
, pp. 248-271
-
-
Perlman, P.S.1
Mahler, H.R.2
-
31
-
-
33645862582
-
How did Saccharomyces evolve to become a good brewer?
-
Piškur J., RozpĚdowska E., Polakova S., Merico A., Compagno C. How did Saccharomyces evolve to become a good brewer?. Trends Genet. 2006, 22:183-186.
-
(2006)
Trends Genet.
, vol.22
, pp. 183-186
-
-
Piškur, J.1
RozpĚdowska, E.2
Polakova, S.3
Merico, A.4
Compagno, C.5
-
32
-
-
78049430020
-
Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid
-
Raab A.M., Gebhardt G., Bolotina N., Weuster-Botz D., Lang C. Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metab. Eng. 2010, 12:518-525.
-
(2010)
Metab. Eng.
, vol.12
, pp. 518-525
-
-
Raab, A.M.1
Gebhardt, G.2
Bolotina, N.3
Weuster-Botz, D.4
Lang, C.5
-
33
-
-
24344441532
-
Yeast aconitase in two locations and two metabolic pathways: seeing small amounts is believing
-
Regev-Rudzki N., Karniely S., Ben-Haim N.N., Pines O. Yeast aconitase in two locations and two metabolic pathways: seeing small amounts is believing. Mol. Biol. Cell 2005, 16:4163-4171.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 4163-4171
-
-
Regev-Rudzki, N.1
Karniely, S.2
Ben-Haim, N.N.3
Pines, O.4
-
34
-
-
0024677063
-
Structure and regulation of KGD1, the structural gene for yeast alpha-ketoglutarate dehydrogenase
-
Repetto B., Tzagoloff A. Structure and regulation of KGD1, the structural gene for yeast alpha-ketoglutarate dehydrogenase. Mol. Cell. Biol. 1989, 9:2695-2705.
-
(1989)
Mol. Cell. Biol.
, vol.9
, pp. 2695-2705
-
-
Repetto, B.1
Tzagoloff, A.2
-
35
-
-
0025345741
-
Structure and regulation of KGD2, the structural gene for yeast dihydrolipoyl transsuccinylase
-
Repetto B., Tzagoloff A. Structure and regulation of KGD2, the structural gene for yeast dihydrolipoyl transsuccinylase. Mol. Cell. Biol. 1990, 10:4221-4232.
-
(1990)
Mol. Cell. Biol.
, vol.10
, pp. 4221-4232
-
-
Repetto, B.1
Tzagoloff, A.2
-
36
-
-
0025912489
-
In vivo assembly of yeast mitochondrial alpha-ketoglutarate dehydrogenase complex
-
Repetto B., Tzagoloff A. In vivo assembly of yeast mitochondrial alpha-ketoglutarate dehydrogenase complex. Mol. Cell. Biol. 1991, 11:3931-3939.
-
(1991)
Mol. Cell. Biol.
, vol.11
, pp. 3931-3939
-
-
Repetto, B.1
Tzagoloff, A.2
-
37
-
-
84890308000
-
Harvesting yeast (Saccharomyces cerevisiae) at different physiological phases significantly affects its functionality in bread dough fermentation
-
Rezaei M.N., Dornez E., Jacobs P., Parsi A., Verstrepen K.J., Courtin C.M. Harvesting yeast (Saccharomyces cerevisiae) at different physiological phases significantly affects its functionality in bread dough fermentation. Food Microbiol. 2014, 39:108-115.
-
(2014)
Food Microbiol.
, vol.39
, pp. 108-115
-
-
Rezaei, M.N.1
Dornez, E.2
Jacobs, P.3
Parsi, A.4
Verstrepen, K.J.5
Courtin, C.M.6
-
38
-
-
0035558186
-
Adsorption of oxygen gas by hydrated wheat flour
-
Xu F. Adsorption of oxygen gas by hydrated wheat flour. LWT Food Sci. Technol. 2001, 34:66-70.
-
(2001)
LWT Food Sci. Technol.
, vol.34
, pp. 66-70
-
-
Xu, F.1
|