메뉴 건너뛰기




Volumn 37, Issue 3, 2015, Pages 335-344

Mechanical systems biology of C. Elegans touch sensation

Author keywords

Caenorhabditis elegans; Cytoskeleton; Force transmission; Mechanics; Mechanosensation; Tension; Touch

Indexed keywords

ACTIN; ION CHANNEL; SPECTRIN; CAENORHABDITIS ELEGANS PROTEIN;

EID: 84925588040     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201400154     Document Type: Article
Times cited : (28)

References (119)
  • 1
    • 70349906572 scopus 로고    scopus 로고
    • Perception, body, and the sense of touch: phenomenology and philosophy of mind
    • Mattens F. 2009. Perception, body, and the sense of touch: phenomenology and philosophy of mind. Husserl Studies 25: 97-120.
    • (2009) Husserl Studies , vol.25 , pp. 97-120
    • Mattens, F.1
  • 2
    • 5444263731 scopus 로고
    • The sense of touch
    • O'Shaughnessy B. 1989. The sense of touch. Aust J Phil 67: 37-58.
    • (1989) Aust J Phil , vol.67 , pp. 37-58
    • O'Shaughnessy, B.1
  • 3
    • 0032442219 scopus 로고    scopus 로고
    • A molecular component of the arterial baroreceptor mechanotransducer
    • Drummond HA, Price MP, Welsh MJ, Abboud FM. 1998. A molecular component of the arterial baroreceptor mechanotransducer. Neuron 21: 1435-41.
    • (1998) Neuron , vol.21 , pp. 1435-1441
    • Drummond, H.A.1    Price, M.P.2    Welsh, M.J.3    Abboud, F.M.4
  • 4
    • 84909618608 scopus 로고    scopus 로고
    • Piezo1 integration of vascular architecture with physiological force
    • in press)
    • Li J, Hou B, Tumova S, Muraki K, et al. 2014. Piezo1 integration of vascular architecture with physiological force. Nature (in press), doi: 10.1038/nature13701
    • (2014) Nature
    • Li, J.1    Hou, B.2    Tumova, S.3    Muraki, K.4
  • 5
    • 59149094538 scopus 로고    scopus 로고
    • Stretching single talin rod molecules activates vinculin binding
    • del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, et al. 2009. Stretching single talin rod molecules activates vinculin binding. Science 323: 638-41.
    • (2009) Science , vol.323 , pp. 638-641
    • del Rio, A.1    Perez-Jimenez, R.2    Liu, R.3    Roca-Cusachs, P.4
  • 7
    • 70350502971 scopus 로고    scopus 로고
    • Measuring accurately liquid and tissue surface tension with a compression plate tensiometer
    • Mgharbel A, Delanoe-Ayari H, Rieu JP. 2009. Measuring accurately liquid and tissue surface tension with a compression plate tensiometer. HFSP J 3: 213-21.
    • (2009) HFSP J , vol.3 , pp. 213-221
    • Mgharbel, A.1    Delanoe-Ayari, H.2    Rieu, J.P.3
  • 8
    • 79959766992 scopus 로고    scopus 로고
    • Caenorhabditis elegans body mechanics are regulated by body wall muscle tone
    • Petzold BC, Park SJ, Ponce P, Roozeboom C, et al. 2011. Caenorhabditis elegans body mechanics are regulated by body wall muscle tone. Biophys J 100: 1977-85.
    • (2011) Biophys J , vol.100 , pp. 1977-1985
    • Petzold, B.C.1    Park, S.J.2    Ponce, P.3    Roozeboom, C.4
  • 9
    • 84901828074 scopus 로고    scopus 로고
    • Feeling the hidden mechanical forces in lipid bilayer is an original sense
    • Anishkin A, Loukin SH, Teng J, Kung C. 2014. Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc Natl Acad Sci USA 111: 7898-905.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 7898-7905
    • Anishkin, A.1    Loukin, S.H.2    Teng, J.3    Kung, C.4
  • 10
    • 58049196875 scopus 로고    scopus 로고
    • Neurosensory mechanotransduction
    • Chalfie M. 2009. Neurosensory mechanotransduction. Nat Rev Mol Cell Biol 10: 44-52.
    • (2009) Nat Rev Mol Cell Biol , vol.10 , pp. 44-52
    • Chalfie, M.1
  • 11
    • 79955441991 scopus 로고    scopus 로고
    • Balancing forces: architectural control of mechanotransduction
    • DuFort CC, Paszek MJ, Weaver VM. 2011. Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol 12: 308-19.
    • (2011) Nat Rev Mol Cell Biol , vol.12 , pp. 308-319
    • DuFort, C.C.1    Paszek, M.J.2    Weaver, V.M.3
  • 12
    • 84897480391 scopus 로고    scopus 로고
    • Tensegrity, cellular biophysics, and the mechanics of living systems
    • Ingber DE, Wang N, Stamenovic D. 2014. Tensegrity, cellular biophysics, and the mechanics of living systems. Rep Prog Phys 77: 046603.
    • (2014) Rep Prog Phys , vol.77 , pp. 046603
    • Ingber, D.E.1    Wang, N.2    Stamenovic, D.3
  • 13
    • 58049211966 scopus 로고    scopus 로고
    • Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus
    • Wang N, Tytell JD, Ingber DE. 2009. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10: 75-82.
    • (2009) Nat Rev Mol Cell Biol , vol.10 , pp. 75-82
    • Wang, N.1    Tytell, J.D.2    Ingber, D.E.3
  • 14
    • 33646179573 scopus 로고    scopus 로고
    • Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics
    • Kumar S, Maxwell IZ, Heisterkamp A, Polte TR, et al. 2006. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys J 90: 3762-73.
    • (2006) Biophys J , vol.90 , pp. 3762-3773
    • Kumar, S.1    Maxwell, I.Z.2    Heisterkamp, A.3    Polte, T.R.4
  • 15
    • 36248969983 scopus 로고    scopus 로고
    • Actin stress fibres
    • Pellegrin S, Mellor H. 2007. Actin stress fibres. J Cell Sci 120: 3491-9.
    • (2007) J Cell Sci , vol.120 , pp. 3491-3499
    • Pellegrin, S.1    Mellor, H.2
  • 16
    • 33747382078 scopus 로고    scopus 로고
    • Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement
    • Brangwynne CP, MacKintosh FC, Kumar S, Geisse NA, et al. 2006. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J Cell Biol 173: 733-41.
    • (2006) J Cell Biol , vol.173 , pp. 733-741
    • Brangwynne, C.P.1    MacKintosh, F.C.2    Kumar, S.3    Geisse, N.A.4
  • 18
    • 78651388574 scopus 로고    scopus 로고
    • Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding
    • Stewart MP, Helenius J, Toyoda Y, Ramanathan SP, et al. 2011. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469: 226-30.
    • (2011) Nature , vol.469 , pp. 226-230
    • Stewart, M.P.1    Helenius, J.2    Toyoda, Y.3    Ramanathan, S.P.4
  • 20
    • 51449123136 scopus 로고    scopus 로고
    • Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos
    • Desprat N, Supatto W, Pouille PA, Beaurepaire E, et al. 2008. Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev Cell 15: 470-7.
    • (2008) Dev Cell , vol.15 , pp. 470-477
    • Desprat, N.1    Supatto, W.2    Pouille, P.A.3    Beaurepaire, E.4
  • 21
    • 84866424053 scopus 로고    scopus 로고
    • Dynamic force-induced direct dissociation of protein complexes in a nuclear body in living cells
    • Poh YC, Shevtsov SP, Chowdhury F, Wu DC, et al. 2012. Dynamic force-induced direct dissociation of protein complexes in a nuclear body in living cells. Nat Commun 3: 866.
    • (2012) Nat Commun , vol.3 , pp. 866
    • Poh, Y.C.1    Shevtsov, S.P.2    Chowdhury, F.3    Wu, D.C.4
  • 22
    • 44349189707 scopus 로고    scopus 로고
    • Rapid signal transduction in living cells is a unique feature of mechanotransduction
    • Na S, Collin O, Chowdhury F, Tay B, et al. 2008. Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc Natl Acad Sci USA 105: 6626-31.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 6626-6631
    • Na, S.1    Collin, O.2    Chowdhury, F.3    Tay, B.4
  • 23
    • 17844388845 scopus 로고    scopus 로고
    • Visualizing the mechanical activation of Src
    • Wang Y, Botvinick EL, Zhao Y, Berns MW, et al. 2005. Visualizing the mechanical activation of Src. Nature 434: 1040-5.
    • (2005) Nature , vol.434 , pp. 1040-1045
    • Wang, Y.1    Botvinick, E.L.2    Zhao, Y.3    Berns, M.W.4
  • 24
    • 0036398907 scopus 로고    scopus 로고
    • A cellular tensegrity model to analyse the structural viscoelasticity of the cytoskeleton
    • Canadas P, Laurent VM, Oddou C, Isabey D, et al. 2002. A cellular tensegrity model to analyse the structural viscoelasticity of the cytoskeleton. J Theor Biol 218: 155-73.
    • (2002) J Theor Biol , vol.218 , pp. 155-173
    • Canadas, P.1    Laurent, V.M.2    Oddou, C.3    Isabey, D.4
  • 25
    • 13744250304 scopus 로고    scopus 로고
    • Long-distance propagation of forces in a cell
    • Wang N, Suo Z. 2005. Long-distance propagation of forces in a cell. Biochem Biophys Res Commun 328: 1133-8.
    • (2005) Biochem Biophys Res Commun , vol.328 , pp. 1133-1138
    • Wang, N.1    Suo, Z.2
  • 26
    • 0036084083 scopus 로고    scopus 로고
    • Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells
    • Wang N, Tolic-Norrelykke IM, Chen J, Mijailovich SM, et al. 2002. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282: C606-16.
    • (2002) Am J Physiol Cell Physiol , vol.282 , pp. C606-C616
    • Wang, N.1    Tolic-Norrelykke, I.M.2    Chen, J.3    Mijailovich, S.M.4
  • 27
    • 84859700741 scopus 로고    scopus 로고
    • Dynamics of mechanical signal transmission through prestressed stress fibers
    • Hwang Y, Barakat AI. 2012. Dynamics of mechanical signal transmission through prestressed stress fibers. PLoS ONE 7: e35343.
    • (2012) PLoS ONE , vol.7 , pp. e35343
    • Hwang, Y.1    Barakat, A.I.2
  • 28
    • 84869826792 scopus 로고    scopus 로고
    • Mechanisms of cytoskeleton-mediated mechanical signal transmission in cells
    • Hwang Y, Gouget CL, Barakat AI. 2012. Mechanisms of cytoskeleton-mediated mechanical signal transmission in cells. Commun Integr Biol 5: 538-42.
    • (2012) Commun Integr Biol , vol.5 , pp. 538-542
    • Hwang, Y.1    Gouget, C.L.2    Barakat, A.I.3
  • 29
    • 16644397827 scopus 로고    scopus 로고
    • The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals
    • O'Hagan R, Chalfie M, Goodman MB. 2005. The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat Neurosci 8: 43-50.
    • (2005) Nat Neurosci , vol.8 , pp. 43-50
    • O'Hagan, R.1    Chalfie, M.2    Goodman, M.B.3
  • 30
    • 0025473093 scopus 로고
    • Intermediate filaments may prevent buckling of compressively loaded microtubules
    • Brodland GW, Gordon R. 1990. Intermediate filaments may prevent buckling of compressively loaded microtubules. J Biomech Eng 112: 319-21.
    • (1990) J Biomech Eng , vol.112 , pp. 319-321
    • Brodland, G.W.1    Gordon, R.2
  • 31
    • 0027533269 scopus 로고
    • Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape
    • Gittes F, Mickey B, Nettleton J, Howard J. 1993. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol 120: 923-34.
    • (1993) J Cell Biol , vol.120 , pp. 923-934
    • Gittes, F.1    Mickey, B.2    Nettleton, J.3    Howard, J.4
  • 32
    • 0029153356 scopus 로고
    • Rigidity of microtubules is increased by stabilizing agents
    • Mickey B, Howard J. 1995. Rigidity of microtubules is increased by stabilizing agents. J Cell Biol 130: 909-17.
    • (1995) J Cell Biol , vol.130 , pp. 909-917
    • Mickey, B.1    Howard, J.2
  • 33
    • 0028145209 scopus 로고
    • The force exerted by a single kinesin molecule against a viscous load
    • Hunt AJ, Gittes F, Howard J. 1994. The force exerted by a single kinesin molecule against a viscous load. Biophys J 67: 766-81.
    • (1994) Biophys J , vol.67 , pp. 766-781
    • Hunt, A.J.1    Gittes, F.2    Howard, J.3
  • 34
    • 0028362896 scopus 로고
    • Force and velocity measured for single kinesin molecules
    • Svoboda K, Block SM. 1994. Force and velocity measured for single kinesin molecules. Cell 77: 773-84.
    • (1994) Cell , vol.77 , pp. 773-784
    • Svoboda, K.1    Block, S.M.2
  • 35
    • 0029960345 scopus 로고    scopus 로고
    • The movement of kinesin along microtubules
    • Howard J. 1996. The movement of kinesin along microtubules. Annu Rev Physiol 58: 703-29.
    • (1996) Annu Rev Physiol , vol.58 , pp. 703-729
    • Howard, J.1
  • 37
    • 55149089827 scopus 로고    scopus 로고
    • Mechanics of microtubule buckling supported by cytoplasm
    • Jiang HQ, Zhang JP. 2008. Mechanics of microtubule buckling supported by cytoplasm. J Appl Mech-T Asme 75: 061019.
    • (2008) J Appl Mech-T Asme , vol.75 , pp. 061019
    • Jiang, H.Q.1    Zhang, J.P.2
  • 38
    • 49749120270 scopus 로고    scopus 로고
    • Mechanics of buckled carbon nanotubes on elastomeric substrates
    • Xiao J, Jiang H, Khang DY, Wu J, et al. 2008. Mechanics of buckled carbon nanotubes on elastomeric substrates. J Appl Phys 104: 033543.
    • (2008) J Appl Phys , vol.104 , pp. 033543
    • Xiao, J.1    Jiang, H.2    Khang, D.Y.3    Wu, J.4
  • 39
    • 79051468781 scopus 로고    scopus 로고
    • Buckling and force propagation along intracellular microtubules
    • Das M, Levine AJ, MacKintosh FC. 2008. Buckling and force propagation along intracellular microtubules. Eur Phys Lett 84.
    • (2008) Eur Phys Lett , pp. 84
    • Das, M.1    Levine, A.J.2    MacKintosh, F.C.3
  • 40
    • 84870541850 scopus 로고    scopus 로고
    • Attenuated short wavelength buckling and force propagation in a biopolymer-reinforced rod
    • Shan WL, Chen Z, Broedersz CP, Gumaste AA, et al. 2013. Attenuated short wavelength buckling and force propagation in a biopolymer-reinforced rod. Soft Matter 9: 194.
    • (2013) Soft Matter , vol.9 , pp. 194
    • Shan, W.L.1    Chen, Z.2    Broedersz, C.P.3    Gumaste, A.A.4
  • 41
    • 0030801830 scopus 로고    scopus 로고
    • Mechanics of microtubule bundles in pillar cells from the inner ear
    • Tolomeo JA, Holley MC. 1997. Mechanics of microtubule bundles in pillar cells from the inner ear. Biophys J 73: 2241-7.
    • (1997) Biophys J , vol.73 , pp. 2241-2247
    • Tolomeo, J.A.1    Holley, M.C.2
  • 42
    • 34547287278 scopus 로고    scopus 로고
    • Polymerization force driven buckling of microtubule bundles determines the wavelength of patterns formed in tubulin solutions
    • Guo Y, Liu Y, Tang JX, Valles JM, Jr. 2007. Polymerization force driven buckling of microtubule bundles determines the wavelength of patterns formed in tubulin solutions. Phys Rev Lett 98: 198103.
    • (2007) Phys Rev Lett , vol.98 , pp. 198103
    • Guo, Y.1    Liu, Y.2    Tang, J.X.3    Valles Jr, J.M.4
  • 44
    • 84055200331 scopus 로고    scopus 로고
    • Effects of dynein on microtubule mechanics and centrosome positioning
    • Wu J, Misra G, Russell RJ, Ladd AJ, et al. 2011. Effects of dynein on microtubule mechanics and centrosome positioning. Mol Biol Cell 22: 4834-41.
    • (2011) Mol Biol Cell , vol.22 , pp. 4834-4841
    • Wu, J.1    Misra, G.2    Russell, R.J.3    Ladd, A.J.4
  • 45
    • 84886011436 scopus 로고    scopus 로고
    • Mechanical players-The role of intermediate filaments in cell mechanics and organization
    • Buehler MJ. 2013. Mechanical players-The role of intermediate filaments in cell mechanics and organization. Biophys J 105: 1733-34.
    • (2013) Biophys J , vol.105 , pp. 1733-1734
    • Buehler, M.J.1
  • 46
    • 75749107907 scopus 로고    scopus 로고
    • Cell mechanics and the cytoskeleton
    • Fletcher DA, Mullins RD. 2010. Cell mechanics and the cytoskeleton. Nature 463: 485-92.
    • (2010) Nature , vol.463 , pp. 485-492
    • Fletcher, D.A.1    Mullins, R.D.2
  • 47
    • 34250880140 scopus 로고    scopus 로고
    • Intermediate filaments: from cell architecture to nanomechanics
    • Herrmann H, Bar H, Kreplak L, Strelkov SV, et al. 2007. Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8: 562-73.
    • (2007) Nat Rev Mol Cell Biol , vol.8 , pp. 562-573
    • Herrmann, H.1    Bar, H.2    Kreplak, L.3    Strelkov, S.V.4
  • 48
    • 84883059455 scopus 로고    scopus 로고
    • Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation
    • Swift J, Ivanovska IL, Buxboim A, Harada T, et al. 2013. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341: 1240104.
    • (2013) Science , vol.341 , pp. 1240104
    • Swift, J.1    Ivanovska, I.L.2    Buxboim, A.3    Harada, T.4
  • 49
    • 84873731727 scopus 로고    scopus 로고
    • The expanding significance of keratin intermediate filaments in normal and diseased epithelia
    • Pan X, Hobbs RP, Coulombe PA. 2013. The expanding significance of keratin intermediate filaments in normal and diseased epithelia. Curr Opin Cell Biol 25: 47-56.
    • (2013) Curr Opin Cell Biol , vol.25 , pp. 47-56
    • Pan, X.1    Hobbs, R.P.2    Coulombe, P.A.3
  • 50
    • 3242706075 scopus 로고    scopus 로고
    • A NUDEL-dependent mechanism of neurofilament assembly regulates the integrity of CNS neurons
    • Nguyen MD, Shu T, Sanada K, Lariviere RC, et al. 2004. A NUDEL-dependent mechanism of neurofilament assembly regulates the integrity of CNS neurons. Nat Cell Biol 6: 595-608.
    • (2004) Nat Cell Biol , vol.6 , pp. 595-608
    • Nguyen, M.D.1    Shu, T.2    Sanada, K.3    Lariviere, R.C.4
  • 51
    • 69749098439 scopus 로고    scopus 로고
    • Neurofilaments bind tubulin and modulate its polymerization
    • Bocquet A, Berges R, Frank R, Robert P, et al. 2009. Neurofilaments bind tubulin and modulate its polymerization. J Neurosci 29: 11043-54.
    • (2009) J Neurosci , vol.29 , pp. 11043-11054
    • Bocquet, A.1    Berges, R.2    Frank, R.3    Robert, P.4
  • 52
    • 84855946671 scopus 로고    scopus 로고
    • A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration
    • Weber GF, Bjerke MA, DeSimone DW. 2012. A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Dev Cell 22: 104-15.
    • (2012) Dev Cell , vol.22 , pp. 104-115
    • Weber, G.F.1    Bjerke, M.A.2    DeSimone, D.W.3
  • 53
    • 1242317811 scopus 로고    scopus 로고
    • Intermediate filaments are required for C. elegans epidermal elongation
    • Woo WM, Goncharov A, Jin Y, Chisholm AD. 2004. Intermediate filaments are required for C. elegans epidermal elongation. Dev Biol 267: 216-29.
    • (2004) Dev Biol , vol.267 , pp. 216-229
    • Woo, W.M.1    Goncharov, A.2    Jin, Y.3    Chisholm, A.D.4
  • 54
    • 84875523320 scopus 로고    scopus 로고
    • Stiffened lipid platforms at molecular force foci
    • Anishkin A, Kung C. 2013. Stiffened lipid platforms at molecular force foci. Proc Natl Acad Sci USA 110: 4886-92.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 4886-4892
    • Anishkin, A.1    Kung, C.2
  • 55
    • 84885596199 scopus 로고    scopus 로고
    • Mechano-gated ion channels in sensory systems
    • Delmas P, Coste B. 2013. Mechano-gated ion channels in sensory systems. Cell 155: 278-84.
    • (2013) Cell , vol.155 , pp. 278-284
    • Delmas, P.1    Coste, B.2
  • 56
    • 80054068982 scopus 로고    scopus 로고
    • Mechanosensitive channels: what can they do and how do they do it
    • Haswell ES, Phillips R, Rees DC. 2011. Mechanosensitive channels: what can they do and how do they do it. Structure 19: 1356-69.
    • (2011) Structure , vol.19 , pp. 1356-1369
    • Haswell, E.S.1    Phillips, R.2    Rees, D.C.3
  • 57
    • 84869138346 scopus 로고    scopus 로고
    • Molecular force transduction by ion channels: diversity and unifying principles
    • Sukharev S, Sachs F. 2012. Molecular force transduction by ion channels: diversity and unifying principles. J Cell Sci 125: 3075-83.
    • (2012) J Cell Sci , vol.125 , pp. 3075-3083
    • Sukharev, S.1    Sachs, F.2
  • 58
    • 84939881026 scopus 로고    scopus 로고
    • The force-from-lipid (FFL) principle of mechanosensitivity, at large and in elements
    • in press)
    • Teng J, Loukin S, Anishkin A, Kung C. 2014. The force-from-lipid (FFL) principle of mechanosensitivity, at large and in elements. Pflugers Arch (in press), doi: 10.1007/s00424-014-1530-2.
    • (2014) Pflugers Arch
    • Teng, J.1    Loukin, S.2    Anishkin, A.3    Kung, C.4
  • 59
    • 0033932837 scopus 로고    scopus 로고
    • Effect of chain length and unsaturation on elasticity of lipid bilayers
    • Rawicz W, Olbrich KC, McIntosh T, Needham D, et al. 2000. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79: 328-39.
    • (2000) Biophys J , vol.79 , pp. 328-339
    • Rawicz, W.1    Olbrich, K.C.2    McIntosh, T.3    Needham, D.4
  • 60
    • 1642488938 scopus 로고    scopus 로고
    • Analytic models for mechanotransduction: gating a mechanosensitive channel
    • Wiggins P, Phillips R. 2004. Analytic models for mechanotransduction: gating a mechanosensitive channel. Proc Natl Acad Sci USA 101: 4071-6.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 4071-4076
    • Wiggins, P.1    Phillips, R.2
  • 61
    • 34250878976 scopus 로고    scopus 로고
    • TRP channels in mechanosensation: direct or indirect activation
    • Christensen AP, Corey DP. 2007. TRP channels in mechanosensation: direct or indirect activation. Nat Rev Neurosci 8: 510-21.
    • (2007) Nat Rev Neurosci , vol.8 , pp. 510-521
    • Christensen, A.P.1    Corey, D.P.2
  • 62
    • 0031740415 scopus 로고    scopus 로고
    • Hydrophobic mismatch between proteins and lipids in membranes
    • Killian JA. 1998. Hydrophobic mismatch between proteins and lipids in membranes. Bba-Rev Biomembranes 1376: 401-16.
    • (1998) Bba-Rev Biomembranes , vol.1376 , pp. 401-416
    • Killian, J.A.1
  • 63
    • 84906940291 scopus 로고    scopus 로고
    • Activation of a Bacterial Mechanosensitive Channel in Mammalian Cells by Cytoskeletal Stress
    • Heureaux J, Chen D, Murray VL, Deng CX, et al. 2014. Activation of a Bacterial Mechanosensitive Channel in Mammalian Cells by Cytoskeletal Stress. Cell Mol Bioeng 7: 307-19.
    • (2014) Cell Mol Bioeng , vol.7 , pp. 307-319
    • Heureaux, J.1    Chen, D.2    Murray, V.L.3    Deng, C.X.4
  • 64
    • 84877574821 scopus 로고    scopus 로고
    • A NOMPC-dependent membrane-microtubule connector is a candidate for the gating spring in fly mechanoreceptors
    • Liang X, Madrid J, Gartner R, Verbavatz JM, et al. 2013. A NOMPC-dependent membrane-microtubule connector is a candidate for the gating spring in fly mechanoreceptors. Curr Biol 23: 755-63.
    • (2013) Curr Biol , vol.23 , pp. 755-763
    • Liang, X.1    Madrid, J.2    Gartner, R.3    Verbavatz, J.M.4
  • 65
    • 84895806869 scopus 로고    scopus 로고
    • Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels
    • Brohawn SG, Su Z, MacKinnon R. 2014. Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. Proc Natl Acad Sci USA 111: 3614-9.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 3614-3619
    • Brohawn, S.G.1    Su, Z.2    MacKinnon, R.3
  • 66
    • 23744506839 scopus 로고    scopus 로고
    • Cross-talk between the mechano-gated K2P channel TREK-1 and the actin cytoskeleton
    • Lauritzen I, Chemin J, Honore E, Jodar M, et al. 2005. Cross-talk between the mechano-gated K2P channel TREK-1 and the actin cytoskeleton. EMBO Rep 6: 642-8.
    • (2005) EMBO Rep , vol.6 , pp. 642-648
    • Lauritzen, I.1    Chemin, J.2    Honore, E.3    Jodar, M.4
  • 67
    • 84880525415 scopus 로고    scopus 로고
    • The Caenorhabditis elegans epidermis as a model skin. II: differentiation and physiological roles
    • Chisholm AD, Xu S. 2012. The Caenorhabditis elegans epidermis as a model skin. II: differentiation and physiological roles. Wiley Interdiscip Rev Dev Biol 1: 879-902.
    • (2012) Wiley Interdiscip Rev Dev Biol , vol.1 , pp. 879-902
    • Chisholm, A.D.1    Xu, S.2
  • 69
    • 38449107210 scopus 로고    scopus 로고
    • Nanoscale organization of the MEC-4 DEG/ENaC sensory mechanotransduction channel in Caenorhabditis elegans touch receptor neurons
    • Cueva JG, Mulholland A, Goodman MB. 2007. Nanoscale organization of the MEC-4 DEG/ENaC sensory mechanotransduction channel in Caenorhabditis elegans touch receptor neurons. J Neurosci 27: 14089-98.
    • (2007) J Neurosci , vol.27 , pp. 14089-14098
    • Cueva, J.G.1    Mulholland, A.2    Goodman, M.B.3
  • 70
    • 9644289407 scopus 로고    scopus 로고
    • Extracellular proteins organize the mechanosensory channel complex in C. elegans touch receptor neurons
    • Emtage L, Gu G, Hartwieg E, Chalfie M. 2004. Extracellular proteins organize the mechanosensory channel complex in C. elegans touch receptor neurons. Neuron 44: 795-807.
    • (2004) Neuron , vol.44 , pp. 795-807
    • Emtage, L.1    Gu, G.2    Hartwieg, E.3    Chalfie, M.4
  • 71
    • 84878766506 scopus 로고    scopus 로고
    • MEMS-based force-clamp analysis of the role of body stiffness in C. elegans touch sensation
    • Petzold BC, Park SJ, Mazzochette EA, Goodman MB, et al. 2013. MEMS-based force-clamp analysis of the role of body stiffness in C. elegans touch sensation. Integr Biol (Camb) 5: 853-64.
    • (2013) Integr Biol (Camb) , vol.5 , pp. 853-864
    • Petzold, B.C.1    Park, S.J.2    Mazzochette, E.A.3    Goodman, M.B.4
  • 73
    • 36849087277 scopus 로고    scopus 로고
    • Analysis of nematode mechanics by piezoresistive displacement clamp
    • Park SJ, Goodman MB, Pruitt BL. 2007. Analysis of nematode mechanics by piezoresistive displacement clamp. Proc Natl Acad Sci USA 104: 17376-81.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 17376-17381
    • Park, S.J.1    Goodman, M.B.2    Pruitt, B.L.3
  • 74
    • 84875255594 scopus 로고    scopus 로고
    • Viscoelastic properties of the nematode Caenorhabditis elegans, a self-similar, shear-thinning worm
    • Backholm M, Ryu WS, Dalnoki-Veress K. 2013. Viscoelastic properties of the nematode Caenorhabditis elegans, a self-similar, shear-thinning worm. Proc Natl Acad Sci USA 110: 4528-33.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 4528-4533
    • Backholm, M.1    Ryu, W.S.2    Dalnoki-Veress, K.3
  • 75
    • 78650529766 scopus 로고    scopus 로고
    • Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans
    • Fang-Yen C, Wyart M, Xie J, Kawai R, et al. 2010. Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 107: 20323-8.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 20323-20328
    • Fang-Yen, C.1    Wyart, M.2    Xie, J.3    Kawai, R.4
  • 76
    • 84881399452 scopus 로고    scopus 로고
    • World Haptics Conference Natural variation in skin thickness argues for mechanical stimulus control by force instead of displacement
    • Yuxiang W, Marshall KL, Baba Y, Lumpkin EA, et al. 2013. World Haptics Conference Natural variation in skin thickness argues for mechanical stimulus control by force instead of displacement. p. 645-650.
    • (2013) , pp. 645-650
    • Yuxiang, W.1    Marshall, K.L.2    Baba, Y.3    Lumpkin, E.A.4
  • 77
    • 0025734406 scopus 로고
    • Muscle cell attachment in Caenorhabditis elegans
    • Francis R, Waterston RH. 1991. Muscle cell attachment in Caenorhabditis elegans. J Cell Biol 114: 465-79.
    • (1991) J Cell Biol , vol.114 , pp. 465-479
    • Francis, R.1    Waterston, R.H.2
  • 78
    • 0033538845 scopus 로고    scopus 로고
    • Myotactin, a novel hypodermal protein involved in muscle-cell adhesion in Caenorhabditis elegans
    • Hresko MC, Schriefer LA, Shrimankar P, Waterston RH. 1999. Myotactin, a novel hypodermal protein involved in muscle-cell adhesion in Caenorhabditis elegans. J Cell Biol 146: 659-72.
    • (1999) J Cell Biol , vol.146 , pp. 659-672
    • Hresko, M.C.1    Schriefer, L.A.2    Shrimankar, P.3    Waterston, R.H.4
  • 79
    • 0035939673 scopus 로고    scopus 로고
    • Mua-3, a gene required for mechanical tissue integrity in Caenorhabditis elegans, encodes a novel transmembrane protein of epithelial attachment complexes
    • Bercher M, Wahl J, Vogel BE, et al. 2001. Mua-3, a gene required for mechanical tissue integrity in Caenorhabditis elegans, encodes a novel transmembrane protein of epithelial attachment complexes. Lu C 154: 415-26.
    • (2001) Lu C , vol.154 , pp. 415-426
    • Bercher, M.1    Wahl, J.2    Vogel, B.E.3
  • 80
    • 0038022666 scopus 로고    scopus 로고
    • The Caenorhabditis elegans vab-10 spectraplakin isoforms protect the epidermis against internal and external forces
    • Bosher JM, Hahn BS, Legouis R, Sookhareea S, et al. 2003. The Caenorhabditis elegans vab-10 spectraplakin isoforms protect the epidermis against internal and external forces. J Cell Biol 161: 757-68.
    • (2003) J Cell Biol , vol.161 , pp. 757-768
    • Bosher, J.M.1    Hahn, B.S.2    Legouis, R.3    Sookhareea, S.4
  • 81
    • 77954711627 scopus 로고    scopus 로고
    • Enhanced neuronal RNAi in C. elegans using SID-1
    • Calixto A, Chelur D, Topalidou I, Chen X, et al. 2010. Enhanced neuronal RNAi in C. elegans using SID-1. Nat Methods 7: 554-9.
    • (2010) Nat Methods , vol.7 , pp. 554-559
    • Calixto, A.1    Chelur, D.2    Topalidou, I.3    Chen, X.4
  • 82
    • 84892151878 scopus 로고    scopus 로고
    • The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity
    • Martinac B. 2014. The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity. Biochim Biophys Acta 1838: 682-91.
    • (2014) Biochim Biophys Acta , vol.1838 , pp. 682-691
    • Martinac, B.1
  • 83
    • 84902589583 scopus 로고    scopus 로고
    • Sensory biology: it takes Piezo2 to tango
    • Vasquez V, Scherrer G, Goodman MB. 2014. Sensory biology: it takes Piezo2 to tango. Curr Biol 24: R566-9.
    • (2014) Curr Biol , vol.24 , pp. R566-R569
    • Vasquez, V.1    Scherrer, G.2    Goodman, M.B.3
  • 84
    • 84862776759 scopus 로고    scopus 로고
    • The role of Drosophila Piezo in mechanical nociception
    • Kim SE, Coste B, Chadha A, Cook B, et al. 2012. The role of Drosophila Piezo in mechanical nociception. Nature 483: 209-12.
    • (2012) Nature , vol.483 , pp. 209-212
    • Kim, S.E.1    Coste, B.2    Chadha, A.3    Cook, B.4
  • 85
    • 84940328895 scopus 로고    scopus 로고
    • The neuronal genome of Caenorhabditis elegans
    • Hobert O. 2013. The neuronal genome of Caenorhabditis elegans. WormBook 1-106.
    • (2013) WormBook , pp. 1-106
    • Hobert, O.1
  • 86
    • 84862777142 scopus 로고    scopus 로고
    • Piezo proteins are pore-forming subunits of mechanically activated channels
    • Coste B, Xiao B, Santos JS, Syeda R, et al. 2012. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483: 176-81.
    • (2012) Nature , vol.483 , pp. 176-181
    • Coste, B.1    Xiao, B.2    Santos, J.S.3    Syeda, R.4
  • 87
    • 84892511176 scopus 로고    scopus 로고
    • Phospholipids that contain polyunsaturated fatty acids enhance neuronal cell mechanics and touch sensation
    • Vasquez V, Krieg M, Lockhead D, Goodman MB. 2014. Phospholipids that contain polyunsaturated fatty acids enhance neuronal cell mechanics and touch sensation. Cell Rep 6: 70-80.
    • (2014) Cell Rep , vol.6 , pp. 70-80
    • Vasquez, V.1    Krieg, M.2    Lockhead, D.3    Goodman, M.B.4
  • 88
    • 0028127759 scopus 로고
    • Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans
    • Huang M, Chalfie M. 1994. Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367: 467-70.
    • (1994) Nature , vol.367 , pp. 467-470
    • Huang, M.1    Chalfie, M.2
  • 89
    • 0030021050 scopus 로고    scopus 로고
    • Extracellular proteins needed for C. elegans mechanosensation
    • Du H, Gu G, William CM, Chalfie M. 1996. Extracellular proteins needed for C. elegans mechanosensation. Neuron 16: 183-94.
    • (1996) Neuron , vol.16 , pp. 183-194
    • Du, H.1    Gu, G.2    William, C.M.3    Chalfie, M.4
  • 90
    • 0029890657 scopus 로고    scopus 로고
    • Interaction between a putative mechanosensory membrane channel and a collagen
    • Liu JD, Schrank B, Waterston RH. 1996. Interaction between a putative mechanosensory membrane channel and a collagen. Science 273: 361-4.
    • (1996) Science , vol.273 , pp. 361-364
    • Liu, J.D.1    Schrank, B.2    Waterston, R.H.3
  • 91
    • 3042542926 scopus 로고    scopus 로고
    • Patch clamp study of the UNC-105 degenerin and its interaction with the LET-2 collagen in Caenorhabditis elegans muscle
    • Jospin M, Mariol MC, Segalat L, Allard B. 2004. Patch clamp study of the UNC-105 degenerin and its interaction with the LET-2 collagen in Caenorhabditis elegans muscle. J Physiol 557: 379-88.
    • (2004) J Physiol , vol.557 , pp. 379-388
    • Jospin, M.1    Mariol, M.C.2    Segalat, L.3    Allard, B.4
  • 92
    • 33749244657 scopus 로고    scopus 로고
    • Selective assembly of fibulin-1 splice variants reveals distinct extracellular matrix networks and novel functions for perlecan/UNC-52 splice variants
    • Muriel JM, Xu X, Kramer JM, Vogel BE. 2006. Selective assembly of fibulin-1 splice variants reveals distinct extracellular matrix networks and novel functions for perlecan/UNC-52 splice variants. Dev Dyn 235: 2632-40.
    • (2006) Dev Dyn , vol.235 , pp. 2632-2640
    • Muriel, J.M.1    Xu, X.2    Kramer, J.M.3    Vogel, B.E.4
  • 93
    • 27644458288 scopus 로고    scopus 로고
    • Fibulin-1C and Fibulin-1D splice variants have distinct functions and assemble in a hemicentin-dependent manner
    • Muriel JM, Dong C, Hutter H, Vogel BE. 2005. Fibulin-1C and Fibulin-1D splice variants have distinct functions and assemble in a hemicentin-dependent manner. Development 132: 4223-34.
    • (2005) Development , vol.132 , pp. 4223-4234
    • Muriel, J.M.1    Dong, C.2    Hutter, H.3    Vogel, B.E.4
  • 94
    • 77149161099 scopus 로고    scopus 로고
    • Evidence for a protein tether involved in somatic touch
    • Hu J, Chiang LY, Koch M, Lewin GR. 2010. Evidence for a protein tether involved in somatic touch. EMBO J 29: 855-67.
    • (2010) EMBO J , vol.29 , pp. 855-867
    • Hu, J.1    Chiang, L.Y.2    Koch, M.3    Lewin, G.R.4
  • 95
    • 79960846178 scopus 로고    scopus 로고
    • Laminin-332 coordinates mechanotransduction and growth cone bifurcation in sensory neurons
    • Chiang LY, Poole K, Oliveira BE, Duarte N, et al. 2011. Laminin-332 coordinates mechanotransduction and growth cone bifurcation in sensory neurons. Nat Neurosci 14: 993-1000.
    • (2011) Nat Neurosci , vol.14 , pp. 993-1000
    • Chiang, L.Y.1    Poole, K.2    Oliveira, B.E.3    Duarte, N.4
  • 96
    • 84962049551 scopus 로고    scopus 로고
    • Sensory mechanotransduction at membrane-matrix interfaces
    • Poole K, Moroni M, Lewin GR. 2014. Sensory mechanotransduction at membrane-matrix interfaces. Pflugers Arch 1-12.
    • (2014) Pflugers Arch , pp. 1-12
    • Poole, K.1    Moroni, M.2    Lewin, G.R.3
  • 97
    • 0018385401 scopus 로고
    • Organization of neuronal microtubules in the nematode Caenorhabditis elegans
    • Chalfie M, Thomson JN. 1979. Organization of neuronal microtubules in the nematode Caenorhabditis elegans. J Cell Biol 82: 278-89.
    • (1979) J Cell Biol , vol.82 , pp. 278-289
    • Chalfie, M.1    Thomson, J.N.2
  • 98
    • 84862658847 scopus 로고    scopus 로고
    • Posttranslational acetylation of alpha-tubulin constrains protofilament number in native microtubules
    • Cueva JG, Hsin J, Huang KC, Goodman MB. 2012. Posttranslational acetylation of alpha-tubulin constrains protofilament number in native microtubules. Curr Biol 22: 1066-74.
    • (2012) Curr Biol , vol.22 , pp. 1066-1074
    • Cueva, J.G.1    Hsin, J.2    Huang, K.C.3    Goodman, M.B.4
  • 99
    • 0024688962 scopus 로고
    • Mec-7 is a beta-tubulin gene required for the production of 15-protofilament microtubules in Caenorhabditis elegans
    • Savage C, Hamelin M, Culotti JG, Coulson A, et al. 1989. Mec-7 is a beta-tubulin gene required for the production of 15-protofilament microtubules in Caenorhabditis elegans. Genes Dev 3: 870-81.
    • (1989) Genes Dev , vol.3 , pp. 870-881
    • Savage, C.1    Hamelin, M.2    Culotti, J.G.3    Coulson, A.4
  • 100
    • 68849097872 scopus 로고    scopus 로고
    • The multipurpose 15-protofilament microtubules in C. elegans have specific roles in mechanosensation
    • Bounoutas A, O'Hagan R, Chalfie M. 2009. The multipurpose 15-protofilament microtubules in C. elegans have specific roles in mechanosensation. Curr Biol 19: 1362-7.
    • (2009) Curr Biol , vol.19 , pp. 1362-1367
    • Bounoutas, A.1    O'Hagan, R.2    Chalfie, M.3
  • 101
    • 84873554120 scopus 로고    scopus 로고
    • The doublecortin-related gene zyg-8 is a microtubule organizer in Caenorhabditis elegans neurons
    • Bellanger JM, Cueva JG, Baran R, Tang G, et al. 2012. The doublecortin-related gene zyg-8 is a microtubule organizer in Caenorhabditis elegans neurons. J Cell Sci 125: 5417-27.
    • (2012) J Cell Sci , vol.125 , pp. 5417-5427
    • Bellanger, J.M.1    Cueva, J.G.2    Baran, R.3    Tang, G.4
  • 102
    • 84898723545 scopus 로고    scopus 로고
    • PTRN-1, a microtubule minus end-binding CAMSAP homolog, promotes microtubule function in Caenorhabditis elegans neurons
    • Richardson CE, Spilker KA, Cueva JG, Perrino J, et al. 2014. PTRN-1, a microtubule minus end-binding CAMSAP homolog, promotes microtubule function in Caenorhabditis elegans neurons. eLife3: e01498.
    • (2014) eLife3: , pp. e01498
    • Richardson, C.E.1    Spilker, K.A.2    Cueva, J.G.3    Perrino, J.4
  • 103
    • 54049141614 scopus 로고    scopus 로고
    • The invertebrate microtubule-associated protein PTL-1 functions in mechanosensation and development in Caenorhabditis elegans
    • Gordon P, Hingula L, Krasny ML, Swienckowski JL, et al. 2008. The invertebrate microtubule-associated protein PTL-1 functions in mechanosensation and development in Caenorhabditis elegans. Dev Genes Evol 218: 541-51.
    • (2008) Dev Genes Evol , vol.218 , pp. 541-551
    • Gordon, P.1    Hingula, L.2    Krasny, M.L.3    Swienckowski, J.L.4
  • 104
    • 60849108344 scopus 로고    scopus 로고
    • The C. elegans EMAP-like protein, ELP-1 is required for touch sensation and associates with microtubules and adhesion complexes
    • Hueston JL, Herren GP, Cueva JG, Buechner M, et al. 2008. The C. elegans EMAP-like protein, ELP-1 is required for touch sensation and associates with microtubules and adhesion complexes. BMC Dev Biol 8: 110.
    • (2008) BMC Dev Biol , vol.8 , pp. 110
    • Hueston, J.L.1    Herren, G.P.2    Cueva, J.G.3    Buechner, M.4
  • 105
    • 23744508759 scopus 로고    scopus 로고
    • Fast adaptation in vestibular hair cells requires myosin-1c activity
    • Stauffer EA, Scarborough JD, Hirono M, Miller ED. 2005. Fast adaptation in vestibular hair cells requires myosin-1c activity. Neuron 47: 541-53.
    • (2005) Neuron , vol.47 , pp. 541-553
    • Stauffer, E.A.1    Scarborough, J.D.2    Hirono, M.3    Miller, E.D.4
  • 106
    • 84872796017 scopus 로고    scopus 로고
    • Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons
    • Xu K, Zhong G, Zhuang X. 2013. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339: 452-6.
    • (2013) Science , vol.339 , pp. 452-456
    • Xu, K.1    Zhong, G.2    Zhuang, X.3
  • 107
    • 0034958883 scopus 로고    scopus 로고
    • Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues
    • Bennett V, Baines AJ. 2001. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 81: 1353-92.
    • (2001) Physiol Rev , vol.81 , pp. 1353-1392
    • Bennett, V.1    Baines, A.J.2
  • 108
    • 0032796312 scopus 로고    scopus 로고
    • Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study
    • Sleep J, Wilson D, Simmons R, Gratzer W. 1999. Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study. Biophys J 77: 3085-95.
    • (1999) Biophys J , vol.77 , pp. 3085-3095
    • Sleep, J.1    Wilson, D.2    Simmons, R.3    Gratzer, W.4
  • 109
    • 77954699179 scopus 로고    scopus 로고
    • Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex
    • Ipsaro JJ, Harper SL, Messick TE, Marmorstein R, et al. 2010. Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex. Blood 115: 4843-52.
    • (2010) Blood , vol.115 , pp. 4843-4852
    • Ipsaro, J.J.1    Harper, S.L.2    Messick, T.E.3    Marmorstein, R.4
  • 110
    • 77956540295 scopus 로고    scopus 로고
    • A comprehensive model of the spectrin divalent tetramer binding region deduced using homology modeling and chemical cross-linking of a mini-spectrin
    • Li D, Harper SL, Tang HY, Maksimova Y, et al. 2010. A comprehensive model of the spectrin divalent tetramer binding region deduced using homology modeling and chemical cross-linking of a mini-spectrin. J Biol Chem 285: 29535-45.
    • (2010) J Biol Chem , vol.285 , pp. 29535-29545
    • Li, D.1    Harper, S.L.2    Tang, H.Y.3    Maksimova, Y.4
  • 111
    • 84895503972 scopus 로고    scopus 로고
    • Mechanical control of the sense of touch by beta-spectrin
    • Krieg M, Dunn AR, Goodman MB. 2014. Mechanical control of the sense of touch by beta-spectrin. Nat Cell Biol 16: 224-33.
    • (2014) Nat Cell Biol , vol.16 , pp. 224-233
    • Krieg, M.1    Dunn, A.R.2    Goodman, M.B.3
  • 112
    • 40949165235 scopus 로고    scopus 로고
    • Actin stress fibers transmit and focus force to activate mechanosensitive channels
    • Hayakawa K, Tatsumi H, Sokabe M. 2008. Actin stress fibers transmit and focus force to activate mechanosensitive channels. J Cell Sci 121: 496-503.
    • (2008) J Cell Sci , vol.121 , pp. 496-503
    • Hayakawa, K.1    Tatsumi, H.2    Sokabe, M.3
  • 114
    • 74049089318 scopus 로고    scopus 로고
    • Buckling, stiffening, and negative dissipation in the dynamics of a biopolymer in an active medium
    • Kikuchi N, Ehrlicher A, Koch D, Kas JA, et al. 2009. Buckling, stiffening, and negative dissipation in the dynamics of a biopolymer in an active medium. Proc Natl Acad Sci USA 106: 19776-9.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 19776-19779
    • Kikuchi, N.1    Ehrlicher, A.2    Koch, D.3    Kas, J.A.4
  • 115
    • 0023764059 scopus 로고
    • Tension and compression in the cytoskeleton of PC-12 neurites. II: quantitative measurements
    • Dennerll TJ, Joshi HC, Steel VL, Buxbaum RE, et al. 1988. Tension and compression in the cytoskeleton of PC-12 neurites. II: quantitative measurements. J Cell Biol 107: 665-74.
    • (1988) J Cell Biol , vol.107 , pp. 665-674
    • Dennerll, T.J.1    Joshi, H.C.2    Steel, V.L.3    Buxbaum, R.E.4
  • 116
    • 34147155869 scopus 로고    scopus 로고
    • Models of hair cell mechanotransduction
    • Bechstedt S, Howard J. 2007. Models of hair cell mechanotransduction. Curr Top Membr 59: 399-424.
    • (2007) Curr Top Membr , vol.59 , pp. 399-424
    • Bechstedt, S.1    Howard, J.2
  • 117
    • 80052360310 scopus 로고    scopus 로고
    • The DEG/ENaC protein MEC-10 regulates the transduction channel complex in touch receptor neurons
    • Arnadottir J, O'Hagan R, Chen Y, Goodman MB, et al. 2011. The DEG/ENaC protein MEC-10 regulates the transduction channel complex in touch receptor neurons. J Neurosci 31: 12695-704.
    • (2011) J Neurosci , vol.31 , pp. 12695-12704
    • Arnadottir, J.1    O'Hagan, R.2    Chen, Y.3    Goodman, M.B.4
  • 118
    • 45249084352 scopus 로고    scopus 로고
    • Bending of z-lines by mechanical stimuli: an input signal for integrin dependent modulation of ion channels
    • Dyachenko V, Christ A, Gubanov R, Isenberg G. 2008. Bending of z-lines by mechanical stimuli: an input signal for integrin dependent modulation of ion channels. Prog Biophys Mol Biol 97: 196-16.
    • (2008) Prog Biophys Mol Biol , vol.97 , pp. 196-216
    • Dyachenko, V.1    Christ, A.2    Gubanov, R.3    Isenberg, G.4
  • 119
    • 0028899928 scopus 로고
    • Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity
    • Kurachi M, Hoshi M, Tashiro H. 1995. Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity. Cell Motil Cytoskeleton 30: 221-8.
    • (1995) Cell Motil Cytoskeleton , vol.30 , pp. 221-228
    • Kurachi, M.1    Hoshi, M.2    Tashiro, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.