-
1
-
-
84880748603
-
Pathological ventricular remodeling: Mechanisms: Part 1 of 2
-
Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation. 2013;128:388-400.
-
(2013)
Circulation.
, vol.128
, pp. 388-400
-
-
Burchfield, J.S.1
Xie, M.2
Hill, J.A.3
-
2
-
-
84902975038
-
Heart failure with preserved ejection fraction: Mechanisms, clinical features, and therapies
-
Sharma K, Kass DA. Heart failure with preserved ejection fraction: mechanisms, clinical features, and therapies. Circ Res. 2014;115:79-96.
-
(2014)
Circ Res.
, vol.115
, pp. 79-96
-
-
Sharma, K.1
Kass, D.A.2
-
3
-
-
33748323383
-
Regulation of cardiac hypertrophy by intracellular signalling pathways
-
Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. 2006;7:589-600.
-
(2006)
Nat Rev Mol Cell Biol.
, vol.7
, pp. 589-600
-
-
Heineke, J.1
Molkentin, J.D.2
-
4
-
-
34347403248
-
Signaling pathways mediating cardiac myocyte gene expression in physiological and stress responses
-
Clerk A, Cullingford TE, Fuller SJ, et al. Signaling pathways mediating cardiac myocyte gene expression in physiological and stress responses. J Cell Physiol. 2007;212:311-322.
-
(2007)
J Cell Physiol.
, vol.212
, pp. 311-322
-
-
Clerk, A.1
Cullingford, T.E.2
Fuller, S.J.3
-
5
-
-
70849112486
-
Cell signaling in space and time: Where proteins come together and when they're apart
-
Scott JD, Pawson T. Cell signaling in space and time: where proteins come together and when they're apart. Science. 2009;326:1220-1224.
-
(2009)
Science.
, vol.326
, pp. 1220-1224
-
-
Scott, J.D.1
Pawson, T.2
-
6
-
-
0037453510
-
Assembly of cell regulatory systems through protein interaction domains
-
Pawson T, Nash P. Assembly of cell regulatory systems through protein interaction domains. Science. 2003;300:445-452.
-
(2003)
Science.
, vol.300
, pp. 445-452
-
-
Pawson, T.1
Nash, P.2
-
7
-
-
79955770162
-
Scaffold proteins: Hubs for controlling the flow of cellular information
-
Good MC, Zalatan JG, Lim WA. Scaffold proteins: hubs for controlling the flow of cellular information. Science. 2011;332:680-686.
-
(2011)
Science.
, vol.332
, pp. 680-686
-
-
Good, M.C.1
Zalatan, J.G.2
Lim, W.A.3
-
8
-
-
84907409915
-
The scaffold protein muscle A-kinase anchoring protein beta orchestrates cardiac myocyte hypertrophic signaling required for the development of heart failure
-
Kritzer MD, Li J, Passariello CL, et al. The scaffold protein muscle A-kinase anchoring protein beta orchestrates cardiac myocyte hypertrophic signaling required for the development of heart failure. Circ Heart Fail. 2014;7:663-672.
-
(2014)
Circ Heart Fail.
, vol.7
, pp. 663-672
-
-
Kritzer, M.D.1
Li, J.2
Passariello, C.L.3
-
10
-
-
0032842848
-
MAKAP: An A-kinase anchoring protein targeted to the nuclear membrane of differentiated myocytes
-
Kapiloff MS, Schillace RV, Westphal AM, et al. mAKAP: an A-kinase anchoring protein targeted to the nuclear membrane of differentiated myocytes. J Cell Sci. 1999;112:2725-2736.
-
(1999)
J Cell Sci.
, vol.112
, pp. 2725-2736
-
-
Kapiloff, M.S.1
Schillace, R.V.2
Westphal, A.M.3
-
11
-
-
28444443387
-
Spatial restriction of PDK1 activation cascades by anchoring to mAKAPalpha
-
Michel JJ, Townley IK, Dodge-Kafka KL, et al. Spatial restriction of PDK1 activation cascades by anchoring to mAKAPalpha. Mol Cell. 2005;20:661-672.
-
(2005)
Mol Cell.
, vol.20
, pp. 661-672
-
-
Michel, J.J.1
Townley, I.K.2
Dodge-Kafka, K.L.3
-
12
-
-
12344259872
-
Nesprin-1alpha contributes to the targeting of mAKAP to the cardiac myocyte nuclear envelope
-
Pare GC, Easlick JL, Mislow JM, et al. Nesprin-1alpha contributes to the targeting of mAKAP to the cardiac myocyte nuclear envelope. Exp Cell Res. 2005;303:388-399.
-
(2005)
Exp Cell Res.
, vol.303
, pp. 388-399
-
-
Pare, G.C.1
Easlick, J.L.2
Mislow, J.M.3
-
13
-
-
0032977685
-
Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy
-
Bonne G, Di Barletta MR, Varnous S, et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet. 1999;21:285-288.
-
(1999)
Nat Genet.
, vol.21
, pp. 285-288
-
-
Bonne, G.1
Di Barletta, M.R.2
Varnous, S.3
-
14
-
-
0033518282
-
Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease
-
Fatkin D, MacRae C, Sasaki T, et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med. 1999;341:1715-1724.
-
(1999)
N Engl J Med.
, vol.341
, pp. 1715-1724
-
-
Fatkin, D.1
Macrae, C.2
Sasaki, T.3
-
15
-
-
0034702027
-
Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B)
-
Muchir A, Bonne G, van der Kooi AJ, et al. Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum Mol Genet. 2000;9:1453-1459.
-
(2000)
Hum Mol Genet.
, vol.9
, pp. 1453-1459
-
-
Muchir, A.1
Bonne, G.2
Van Der Kooi, A.J.3
-
16
-
-
0027985787
-
Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy
-
Bione S, Maestrini E, Rivella S, et al. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet. 1994;8:323-327.
-
(1994)
Nat Genet.
, vol.8
, pp. 323-327
-
-
Bione, S.1
Maestrini, E.2
Rivella, S.3
-
17
-
-
35748935532
-
Nesprin-1 and-2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity
-
Zhang Q, Bethmann C, Worth NF, et al. Nesprin-1 and-2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum Mol Genet. 2007; 16:2816-2833.
-
(2007)
Hum Mol Genet.
, vol.16
, pp. 2816-2833
-
-
Zhang, Q.1
Bethmann, C.2
Worth, N.F.3
-
18
-
-
79959572816
-
Phospholipase C epsilon scaffolds to muscle-specific A kinase anchoring protein (mAKAPbeta) and integrates multiple hypertrophic stimuli in cardiac myocytes
-
Zhang L, Malik S, Kelley GG, et al. Phospholipase C epsilon scaffolds to muscle-specific A kinase anchoring protein (mAKAPbeta) and integrates multiple hypertrophic stimuli in cardiac myocytes. J Biol Chem. 2011; 286:23012-23021.
-
(2011)
J Biol Chem.
, vol.286
, pp. 23012-23021
-
-
Zhang, L.1
Malik, S.2
Kelley, G.G.3
-
19
-
-
0034640113
-
PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): Defective regulation in failing hearts
-
Marx SO, Reiken S, Hisamatsu Y, et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell. 2000;101:365-376.
-
(2000)
Cell.
, vol.101
, pp. 365-376
-
-
Marx, S.O.1
Reiken, S.2
Hisamatsu, Y.3
-
20
-
-
0032572584
-
A-kinase anchoring protein 100 (AKAP100) is localized in multiple subcellular compartments in the adult rat heart
-
Yang J, Drazba JA, Ferguson DG, et al. A-kinase anchoring protein 100 (AKAP100) is localized in multiple subcellular compartments in the adult rat heart. J Cell Biol. 1998;142:511-522.
-
(1998)
J Cell Biol.
, vol.142
, pp. 511-522
-
-
Yang, J.1
Drazba, J.A.2
Ferguson, D.G.3
-
21
-
-
0034789448
-
MAKAP and the ryanodine receptor are part of a multi-component signaling complex on the cardiomyocyte nuclear envelope
-
Kapiloff MS, Jackson N, Airhart N. mAKAP and the ryanodine receptor are part of a multi-component signaling complex on the cardiomyocyte nuclear envelope. J Cell Sci. 2001;114:3167-3176.
-
(2001)
J Cell Sci.
, vol.114
, pp. 3167-3176
-
-
Kapiloff, M.S.1
Jackson, N.2
Airhart, N.3
-
22
-
-
30544452653
-
The mAKAP complex participates in the induction of cardiac myocyte hypertrophy by adrenergic receptor signaling
-
Pare GC, Bauman AL, McHenry M, et al. The mAKAP complex participates in the induction of cardiac myocyte hypertrophy by adrenergic receptor signaling. J Cell Sci. 2005;118:5637-5646.
-
(2005)
J Cell Sci.
, vol.118
, pp. 5637-5646
-
-
Pare, G.C.1
Bauman, A.L.2
McHenry, M.3
-
23
-
-
25644452031
-
The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways
-
Dodge-Kafka KL, Soughayer J, Pare GC, et al. The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature. 2005;437:574-578.
-
(2005)
Nature.
, vol.437
, pp. 574-578
-
-
Dodge-Kafka, K.L.1
Soughayer, J.2
Pare, G.C.3
-
24
-
-
84925475189
-
-
Deleted in press
-
Deleted in press.
-
-
-
-
25
-
-
58749099474
-
MAKAP compartmentalizes oxygen-dependent control of HIF-1alpha
-
Wong W, Goehring AS, Kapiloff MS, et al. mAKAP compartmentalizes oxygen-dependent control of HIF-1alpha. Sci Signal. 2008;1:ra18.
-
(2008)
Sci Signal.
, vol.1
, pp. ra18
-
-
Wong, W.1
Goehring, A.S.2
Kapiloff, M.S.3
-
26
-
-
33744992976
-
The mAKAP signaling complex: Integration of cAMP, calcium, and MAP kinase signaling pathways
-
Dodge-Kafka KL, Kapiloff MS. The mAKAP signaling complex: integration of cAMP, calcium, and MAP kinase signaling pathways. Eur J Cell Biol. 2006;85:593-602.
-
(2006)
Eur J Cell Biol.
, vol.85
, pp. 593-602
-
-
Dodge-Kafka, K.L.1
Kapiloff, M.S.2
-
27
-
-
84861548235
-
Myocyte enhancer factor 2 (MEF2) tethering to muscle selective A-kinase anchoring protein (mAKAP) is necessary for myogenic differentiation
-
Vargas MA, Tirnauer JS, Glidden N, et al. Myocyte enhancer factor 2 (MEF2) tethering to muscle selective A-kinase anchoring protein (mAKAP) is necessary for myogenic differentiation. Cell Signal. 2012;24: 1496-1503.
-
(2012)
Cell Signal.
, vol.24
, pp. 1496-1503
-
-
Vargas, M.A.1
Tirnauer, J.S.2
Glidden, N.3
-
28
-
-
36849051314
-
Protein kinase A, Ca2+/calmodulin-dependent kinase II, and calcineurin regulate the intracellular trafficking of myopodin between the Z-disc and the nucleus of cardiac myocytes
-
Faul C, Dhume A, Schecter AD, et al. Protein kinase A, Ca2+/calmodulin-dependent kinase II, and calcineurin regulate the intracellular trafficking of myopodin between the Z-disc and the nucleus of cardiac myocytes. Mol Cell Biol. 2007;27:8215-8227.
-
(2007)
Mol Cell Biol.
, vol.27
, pp. 8215-8227
-
-
Faul, C.1
Dhume, A.2
Schecter, A.D.3
-
29
-
-
0042206722
-
Sodium/calcium exchanger (NCX1) macromolecular complex
-
Schulze DH, Muqhal M, Lederer WJ, et al. Sodium/calcium exchanger (NCX1) macromolecular complex. J Biol Chem. 2003; 278:28849-28855.
-
(2003)
J Biol Chem.
, vol.278
, pp. 28849-28855
-
-
Schulze, D.H.1
Muqhal, M.2
Lederer, W.J.3
-
30
-
-
69949130120
-
An adenylyl cyclasemAKAPbeta signaling complex regulates cAMP levels in cardiac myocytes
-
Kapiloff MS, Piggott LA, Sadana R, et al. An adenylyl cyclasemAKAPbeta signaling complex regulates cAMP levels in cardiac myocytes. J Biol Chem. 2009;284:23540-23546.
-
(2009)
J Biol Chem.
, vol.284
, pp. 23540-23546
-
-
Kapiloff, M.S.1
Piggott, L.A.2
Sadana, R.3
-
31
-
-
84875721414
-
Phospholipase Cepsilon hydrolyzes perinuclear phosphatidylinositol 4-phosphate to regulate cardiac hypertrophy
-
Zhang L, Malik S, Pang J, et al. Phospholipase Cepsilon hydrolyzes perinuclear phosphatidylinositol 4-phosphate to regulate cardiac hypertrophy. Cell. 2013;153:216-227.
-
(2013)
Cell.
, vol.153
, pp. 216-227
-
-
Zhang, L.1
Malik, S.2
Pang, J.3
-
32
-
-
84875498777
-
Regulation of MEF2 transcriptional activity by calcineurin/mAKAP complexes
-
Li J, Vargas MA, Kapiloff MS, et al. Regulation of MEF2 transcriptional activity by calcineurin/mAKAP complexes. Exp Cell Res. 2013;319: 447-454.
-
(2013)
Exp Cell Res.
, vol.319
, pp. 447-454
-
-
Li, J.1
Vargas, M.A.2
Kapiloff, M.S.3
-
33
-
-
74149093368
-
The mAKAPbeta scaffold regulates cardiac myocyte hypertrophy via recruitment of activated calcineurin
-
Li J, Negro A, Lopez J, et al. The mAKAPbeta scaffold regulates cardiac myocyte hypertrophy via recruitment of activated calcineurin. J Mol Cell Cardiol. 2010;48:387-394.
-
(2010)
J Mol Cell Cardiol.
, vol.48
, pp. 387-394
-
-
Li, J.1
Negro, A.2
Lopez, J.3
-
34
-
-
84855998675
-
AKAPs: The architectural underpinnings of local cAMP signaling
-
Kritzer MD, Li J, Dodge-Kafka K, et al. AKAPs: the architectural underpinnings of local cAMP signaling. J Mol Cell Cardiol. 2012; 52:351-358.
-
(2012)
J Mol Cell Cardiol.
, vol.52
, pp. 351-358
-
-
Kritzer, M.D.1
Li, J.2
Dodge-Kafka, K.3
-
35
-
-
0032972739
-
The molecular basis for protein kinase A anchoring revealed by solution NMR
-
Newlon MG, Roy M, Morikis D, et al. The molecular basis for protein kinase A anchoring revealed by solution NMR. Nat Struct Biol. 1999;6: 222-227.
-
(1999)
Nat Struct Biol.
, vol.6
, pp. 222-227
-
-
Newlon, M.G.1
Roy, M.2
Morikis, D.3
-
37
-
-
0035901502
-
MAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module
-
Dodge KL, Khouangsathiene S, Kapiloff MS, et al. mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J. 2001;20:1921-1930.
-
(2001)
EMBO J.
, vol.20
, pp. 1921-1930
-
-
Dodge, K.L.1
Khouangsathiene, S.2
Kapiloff, M.S.3
-
39
-
-
0030006920
-
Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase
-
Sette C, Conti M. Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation. J Biol Chem. 1996;271: 16526-16534.
-
(1996)
Involvement of Serine 54 in the Enzyme Activation. J Biol Chem.
, vol.271
, pp. 16526-16534
-
-
Sette, C.1
Conti, M.2
-
40
-
-
4344594414
-
PKA-phosphorylation of PDE4D3 facilitates recruitment of the mAKAP signalling complex
-
Carlisle Michel JJ, Dodge KL, Wong W, et al. PKA-phosphorylation of PDE4D3 facilitates recruitment of the mAKAP signalling complex. Biochem J. 2004;381:587-592.
-
(2004)
Biochem J.
, vol.381
, pp. 587-592
-
-
Carlisle Michel, J.J.1
Dodge, K.L.2
Wong, W.3
-
41
-
-
0033558010
-
The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE4D3 by phosphorylating it at Ser579
-
Hoffmann R, Baillie GS, MacKenzie SJ, et al. The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE4D3 by phosphorylating it at Ser579. EMBO J. 1999;18:893-903.
-
(1999)
EMBO J.
, vol.18
, pp. 893-903
-
-
Hoffmann, R.1
Baillie, G.S.2
Mackenzie, S.J.3
-
42
-
-
42449099614
-
Human PDE4A8, a novel brain-expressed PDE4 cAMP-specific phosphodiesterase that has undergone rapid evolutionary change
-
Mackenzie KF, Topping EC, Bugaj-Gaweda B, et al. Human PDE4A8, a novel brain-expressed PDE4 cAMP-specific phosphodiesterase that has undergone rapid evolutionary change. Biochem J. 2008;411:361-369.
-
(2008)
Biochem J.
, vol.411
, pp. 361-369
-
-
Mackenzie, K.F.1
Topping, E.C.2
Bugaj-Gaweda, B.3
-
43
-
-
77951245640
-
CAMP-stimulated protein phosphatase 2A activity associated with muscle A kinase-anchoring protein (mAKAP) signaling complexes inhibits the phosphorylation and activity of the cAMP-specific phosphodiesterase PDE4D3
-
Dodge-Kafka KL, Bauman A, Mayer N, et al. cAMP-stimulated protein phosphatase 2A activity associated with muscle A kinase-anchoring protein (mAKAP) signaling complexes inhibits the phosphorylation and activity of the cAMP-specific phosphodiesterase PDE4D3. J Biol Chem. 2010;285:11078-11086.
-
(2010)
J Biol Chem.
, vol.285
, pp. 11078-11086
-
-
Dodge-Kafka, K.L.1
Bauman, A.2
Mayer, N.3
-
44
-
-
33847317020
-
Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56delta subunit
-
Ahn JH, McAvoy T, Rakhilin SV, et al. Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56delta subunit. Proc Natl Acad Sci U S A. 2007;104:2979-2984.
-
(2007)
Proc Natl Acad Sci U S A.
, vol.104
, pp. 2979-2984
-
-
Ahn, J.H.1
McAvoy, T.2
Rakhilin, S.V.3
-
45
-
-
84883290250
-
Protein kinase A and phosphodiesterase-4D3 binding to coding polymorphisms of cardiac muscle anchoring protein (mAKAP)
-
Rababa'h A, Craft JW Jr, Wijaya CS, et al. Protein kinase A and phosphodiesterase-4D3 binding to coding polymorphisms of cardiac muscle anchoring protein (mAKAP). J Mol Biol. 2013;425:3277-3288.
-
(2013)
J Mol Biol.
, vol.425
, pp. 3277-3288
-
-
Rababa'h, A.1
Craft, J.W.2
Wijaya, C.S.3
-
46
-
-
0035355360
-
Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy
-
Nicol RL, Frey N, Pearson G, et al. Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. EMBO J. 2001;20:2757-2767.
-
(2001)
EMBO J.
, vol.20
, pp. 2757-2767
-
-
Nicol, R.L.1
Frey, N.2
Pearson, G.3
-
47
-
-
77950909970
-
Targeted deletion of the extracellular signal-regulated protein kinase 5 attenuates hypertrophic response and promotes pressure overload-induced apoptosis in the heart
-
Kimura TE, Jin J, Zi M, et al. Targeted deletion of the extracellular signal-regulated protein kinase 5 attenuates hypertrophic response and promotes pressure overload-induced apoptosis in the heart. Circ Res. 2010;106:961-970.
-
(2010)
Circ Res.
, vol.106
, pp. 961-970
-
-
Kimura, T.E.1
Jin, J.2
Zi, M.3
-
49
-
-
52449095361
-
The RSK family of kinases: Emerging roles in cellular signalling
-
Anjum R, Blenis J. The RSK family of kinases: emerging roles in cellular signalling. Nat Rev Mol Cell Biol. 2008;9:747-758.
-
(2008)
Nat Rev Mol Cell Biol.
, vol.9
, pp. 747-758
-
-
Anjum, R.1
Blenis, J.2
-
50
-
-
0028928616
-
Angiotensin II and other hypertrophic stimuli mediated by G protein-coupled receptors activate tyrosine kinase, mitogen-activated protein kinase, and 90-kD S6 kinase in cardiac myocytes
-
Sadoshima J, Qiu Z, Morgan JP, et al. Angiotensin II and other hypertrophic stimuli mediated by G protein-coupled receptors activate tyrosine kinase, mitogen-activated protein kinase, and 90-kD S6 kinase in cardiac myocytes. The critical role of Ca(2+)-dependent signaling. Circ Res. 1995;76:1-15.
-
(1995)
The Critical Role of Ca(2+)-dependent Signaling. Circ Res.
, vol.76
, pp. 1-15
-
-
Sadoshima, J.1
Qiu, Z.2
Morgan, J.P.3
-
51
-
-
0036135724
-
Activation of mitogen-activated protein kinases and p90 ribosomal S6 kinase in failing human hearts with dilated cardiomyopathy
-
Takeishi Y, Huang Q, Abe J, et al. Activation of mitogen-activated protein kinases and p90 ribosomal S6 kinase in failing human hearts with dilated cardiomyopathy. Cardiovasc Res. 2002;53:131-137.
-
(2002)
Cardiovasc Res.
, vol.53
, pp. 131-137
-
-
Takeishi, Y.1
Huang, Q.2
Abe, J.3
-
52
-
-
85028115496
-
Anchored p90 ribosomal S6 kinase 3 is required for cardiac myocyte hypertrophy
-
Li J, Kritzer MD, Michel JJ, et al. Anchored p90 ribosomal S6 kinase 3 is required for cardiac myocyte hypertrophy. Circ Res. 2013;112: 128-139.
-
(2013)
Circ Res.
, vol.112
, pp. 128-139
-
-
Li, J.1
Kritzer, M.D.2
Michel, J.J.3
-
53
-
-
84884970540
-
P90 ribosomal S6 kinase 3 contributes to cardiac insufficiency in alpha-tropomyosin Glu180Gly transgenic mice
-
Passariello CL, Gayanilo M, Kritzer MD, et al. p90 ribosomal S6 kinase 3 contributes to cardiac insufficiency in alpha-tropomyosin Glu180Gly transgenic mice. Am J Physiol Heart Circ Physiol. 2013; 305:H1010-H1019.
-
(2013)
Am J Physiol Heart Circ Physiol.
, vol.305
, pp. H1010-H1019
-
-
Passariello, C.L.1
Gayanilo, M.2
Kritzer, M.D.3
-
54
-
-
74249106877
-
A novel kinase inhibitor establishes a predominant role for protein kinase D as a cardiac class IIa histone deacetylase kinase
-
Monovich L, Vega RB, Meredith E, et al. A novel kinase inhibitor establishes a predominant role for protein kinase D as a cardiac class IIa histone deacetylase kinase. FEBS Lett. 2010;584:631-637.
-
(2010)
FEBS Lett.
, vol.584
, pp. 631-637
-
-
Monovich, L.1
Vega, R.B.2
Meredith, E.3
-
55
-
-
84880036835
-
HDAC-dependent ventricular remodeling
-
Xie M, Hill JA. HDAC-dependent ventricular remodeling. Trends Cardiovasc Med. 2013;23:229-235.
-
(2013)
Trends Cardiovasc Med.
, vol.23
, pp. 229-235
-
-
Xie, M.1
Hill, J.A.2
-
56
-
-
0028940654
-
Rapid adaptation of cardiac ryanodine receptors: Modulation by Mg2+ and phosphorylation
-
Valdivia HH, Kaplan JH, Ellis-Davies GC, et al. Rapid adaptation of cardiac ryanodine receptors: modulation by Mg2+ and phosphorylation. Science. 1995;267:1997-2000.
-
(1995)
Science.
, vol.267
, pp. 1997-2000
-
-
Valdivia, H.H.1
Kaplan, J.H.2
Ellis-Davies, G.C.3
-
57
-
-
33846460041
-
Agonists and antagonists of the cardiac ryanodine receptor: Potential therapeutic agents?
-
Dulhunty AF, Beard NA, Pouliquin P, et al. Agonists and antagonists of the cardiac ryanodine receptor: potential therapeutic agents? Pharmacol Ther. 2007;113:247-263.
-
(2007)
Pharmacol Ther.
, vol.113
, pp. 247-263
-
-
Dulhunty, A.F.1
Beard, N.A.2
Pouliquin, P.3
-
58
-
-
33646924842
-
Cardiac ryanodine receptor phosphorylation: Target sites and functional consequences
-
Bers DM. Cardiac ryanodine receptor phosphorylation: target sites and functional consequences. Biochem J. 2006;396:e1-e3.
-
(2006)
Biochem J.
, vol.396
, pp. e1-e3
-
-
Bers, D.M.1
-
59
-
-
84898841329
-
Role of RyR2 phosphorylation in heart failure and arrhythmias: Protein kinase A-mediated hyperphosphorylation of the ryanodine receptor at serine 2808 does not alter cardiac contractility or cause heart failure and arrhythmias
-
discussion 7
-
Houser SR. Role of RyR2 phosphorylation in heart failure and arrhythmias: protein kinase A-mediated hyperphosphorylation of the ryanodine receptor at serine 2808 does not alter cardiac contractility or cause heart failure and arrhythmias. Circ Res. 2014;114:1320-1327; discussion 7.
-
(2014)
Circ Res.
, vol.114
, pp. 1320-1327
-
-
Houser, S.R.1
-
60
-
-
84898875027
-
Role of RyR2 phosphorylation in heart failure and arrhythmias: Controversies around ryanodine receptor phosphorylation in cardiac disease
-
discussion 9
-
Dobrev D, Wehrens XH. Role of RyR2 phosphorylation in heart failure and arrhythmias: controversies around ryanodine receptor phosphorylation in cardiac disease. Circ Res. 2014;114:1311-1319; discussion 9.
-
(2014)
Circ Res.
, vol.114
, pp. 1311-1319
-
-
Dobrev, D.1
Wehrens, X.H.2
-
61
-
-
79551577667
-
Structural evidence for perinuclear calcium microdomains in cardiac myocytes
-
Escobar M, Cardenas C, Colavita K, et al. Structural evidence for perinuclear calcium microdomains in cardiac myocytes. J Mol Cell Cardiol. 2011;50:451-459.
-
(2011)
J Mol Cell Cardiol.
, vol.50
, pp. 451-459
-
-
Escobar, M.1
Cardenas, C.2
Colavita, K.3
-
62
-
-
0037007016
-
Impaired cardiac hypertrophic response in Calcineurin Abeta-deficient mice
-
Bueno OF, Wilkins BJ, Tymitz KM, et al. Impaired cardiac hypertrophic response in Calcineurin Abeta-deficient mice. Proc Natl Acad Sci U S A. 2002;99:4586-4591.
-
(2002)
Proc Natl Acad Sci U S A.
, vol.99
, pp. 4586-4591
-
-
Bueno, O.F.1
Wilkins, B.J.2
Tymitz, K.M.3
-
63
-
-
0346059409
-
Calcineurin Abeta gene targeting predisposes the myocardium to acute ischemia-induced apoptosis and dysfunction
-
Bueno OF, Lips DJ, Kaiser RA, et al. Calcineurin Abeta gene targeting predisposes the myocardium to acute ischemia-induced apoptosis and dysfunction. Circ Res. 2004;94:91-99.
-
(2004)
Circ Res.
, vol.94
, pp. 91-99
-
-
Bueno, O.F.1
Lips, D.J.2
Kaiser, R.A.3
-
64
-
-
0347320747
-
Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy
-
Wilkins BJ, Dai YS, Bueno OF, et al. Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res. 2004;94:110-118.
-
(2004)
Circ Res.
, vol.94
, pp. 110-118
-
-
Wilkins, B.J.1
Dai, Y.S.2
Bueno, O.F.3
-
65
-
-
38149029264
-
The MEF2D transcription factor mediates stress-dependent cardiac remodeling in mice
-
Kim Y, Phan D, van Rooij E, et al. The MEF2D transcription factor mediates stress-dependent cardiac remodeling in mice. J Clin Invest. 2008;118:124-132.
-
(2008)
J Clin Invest.
, vol.118
, pp. 124-132
-
-
Kim, Y.1
Phan, D.2
Van Rooij, E.3
-
66
-
-
0036837672
-
Targeted disruption of NFATc3, but not NFATc4, Reveals an intrinsic defect in calcineurinmediated cardiac hypertrophic growth
-
Wilkins BJ, De Windt LJ, Bueno OF, et al. Targeted disruption of NFATc3, but not NFATc4, Reveals an intrinsic defect in calcineurinmediated cardiac hypertrophic growth. Mol Cell Biol. 2002;22: 7603-7613.
-
(2002)
Mol Cell Biol.
, vol.22
, pp. 7603-7613
-
-
Wilkins, B.J.1
De Windt, L.J.2
Bueno, O.F.3
-
67
-
-
52049114958
-
NFATc2 is a necessary mediator of calcineurin-dependent cardiac hypertrophy and heart failure
-
Bourajjaj M, Armand AS, da Costa Martins PA, et al. NFATc2 is a necessary mediator of calcineurin-dependent cardiac hypertrophy and heart failure. J Biol Chem. 2008;283:22295-22303.
-
(2008)
J Biol Chem.
, vol.283
, pp. 22295-22303
-
-
Bourajjaj, M.1
Armand, A.S.2
Da Costa Martins, P.A.3
-
68
-
-
38049147787
-
MEF2: A central regulator of diverse developmental programs
-
Potthoff MJ, Olson EN. MEF2: a central regulator of diverse developmental programs. Development. 2007;134:4131-4140.
-
(2007)
Development.
, vol.134
, pp. 4131-4140
-
-
Potthoff, M.J.1
Olson, E.N.2
-
69
-
-
0033010960
-
Transcriptional activity of MEF2 during mouse embryogenesis monitored with a MEF2-dependent transgene
-
Naya FJ, Wu C, Richardson JA, et al. Transcriptional activity of MEF2 during mouse embryogenesis monitored with a MEF2-dependent transgene. Development. 1999;126:2045-2052.
-
(1999)
Development.
, vol.126
, pp. 2045-2052
-
-
Naya, F.J.1
Wu, C.2
Richardson, J.A.3
-
70
-
-
0032705145
-
MEF2: A transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation
-
Naya FJ, Olson E. MEF2: a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation. Curr Opin Cell Biol. 1999;11:683-688.
-
(1999)
Curr Opin Cell Biol.
, vol.11
, pp. 683-688
-
-
Naya, F.J.1
Olson, E.2
-
71
-
-
0032437107
-
Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins
-
Black BL, Olson EN. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol. 1998;14:167-196.
-
(1998)
Annu Rev Cell Dev Biol.
, vol.14
, pp. 167-196
-
-
Black, B.L.1
Olson, E.N.2
-
72
-
-
0038410023
-
Calcineurin initiates skeletal muscle differentiation by activating MEF2 and MyoD
-
Friday BB, Mitchell PO, Kegley KM, et al. Calcineurin initiates skeletal muscle differentiation by activating MEF2 and MyoD. Differentiation. 2003;71:217-227.
-
(2003)
Differentiation.
, vol.71
, pp. 217-227
-
-
Friday, B.B.1
Mitchell, P.O.2
Kegley, K.M.3
-
73
-
-
17944382249
-
Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway
-
Wu H, Rothermel B, Kanatous S, et al. Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway. EMBO J. 2001;20:6414-6423.
-
(2001)
EMBO J.
, vol.20
, pp. 6414-6423
-
-
Wu, H.1
Rothermel, B.2
Kanatous, S.3
-
74
-
-
0034674622
-
Big mitogen-activated kinase regulates multiple members of the MEF2 protein family
-
Kato Y, Zhao M, Morikawa A, et al. Big mitogen-activated kinase regulates multiple members of the MEF2 protein family. J Biol Chem. 2000; 275:18534-18540.
-
(2000)
J Biol Chem.
, vol.275
, pp. 18534-18540
-
-
Kato, Y.1
Zhao, M.2
Morikawa, A.3
-
75
-
-
20444439115
-
Regulation of neuroprotective activity of myocyte-enhancer factor 2 by cAMP-protein kinase A signaling pathway in neuronal survival
-
Wang X, Tang X, Li M, et al. Regulation of neuroprotective activity of myocyte-enhancer factor 2 by cAMP-protein kinase A signaling pathway in neuronal survival. J Biol Chem. 2005;280:16705-16713.
-
(2005)
J Biol Chem.
, vol.280
, pp. 16705-16713
-
-
Wang, X.1
Tang, X.2
Li, M.3
-
76
-
-
84855753309
-
Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4
-
Backs J, Worst BC, Lehmann LH, et al. Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4. J Cell Biol. 195:403-415.
-
J Cell Biol.
, vol.195
, pp. 403-415
-
-
Backs, J.1
Worst, B.C.2
Lehmann, L.H.3
-
77
-
-
0033776536
-
Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein
-
Ohh M, Park CW, Ivan M, et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol. 2000;2:423-427.
-
(2000)
Nat Cell Biol.
, vol.2
, pp. 423-427
-
-
Ohh, M.1
Park, C.W.2
Ivan, M.3
-
78
-
-
0033587146
-
The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis
-
Maxwell PH, Wiesener MS, Chang GW, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399:271-275.
-
(1999)
Nature.
, vol.399
, pp. 271-275
-
-
Maxwell, P.H.1
Wiesener, M.S.2
Chang, G.W.3
|