메뉴 건너뛰기




Volumn 29, Issue 20, 2010, Pages 2137-2148

The performance of different propensity-score methods for estimating differences in proportions (risk differences or absolute risk reductions) in observational studies

Author keywords

Binary data; Inverse probability of treatment weighting; IPTW; Matching; Number needed to treat; Observational study; Propensity score; Propensity score matching; Risk difference

Indexed keywords

ANALYSIS OF VARIANCE; ANALYTICAL ERROR; ARTICLE; ATTRIBUTABLE RISK; CONFIDENCE INTERVAL; MEAN SQUARED ERROR; MONTE CARLO METHOD; PROPENSITY SCORE; SCORING SYSTEM;

EID: 77956314484     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.3854     Document Type: Article
Times cited : (284)

References (34)
  • 1
    • 0036740882 scopus 로고    scopus 로고
    • Odds ratio, relative risk, absolute risk reduction, and the number needed to treat - Which of these should we use?
    • Schechtman E. Odds ratio, relative risk, absolute risk reduction, and the number needed to treat - which of these should we use? Value in Health 2002; 5:431-436.
    • (2002) Value in Health , vol.5 , pp. 431-436
    • Schechtman, E.1
  • 2
    • 0028908929 scopus 로고
    • The number needed to treat: A clinically useful measure of treatment effect
    • Cook RJ, Sackett DL. The number needed to treat: a clinically useful measure of treatment effect. British Medical Journal 1995; 310:452-454.
    • (1995) British Medical Journal , vol.310 , pp. 452-454
    • Cook, R.J.1    Sackett, D.L.2
  • 4
    • 0028018289 scopus 로고
    • Clinically useful measures of effect in binary analyses of randomized trials
    • Sinclair JC, Bracken MB. Clinically useful measures of effect in binary analyses of randomized trials. Journal of Clinical Epidemiology 1994; 47:881-889.
    • (1994) Journal of Clinical Epidemiology , vol.47 , pp. 881-889
    • Sinclair, J.C.1    Bracken, M.B.2
  • 5
    • 77956301171 scopus 로고    scopus 로고
    • Available from: 13 November
    • Available from: http://resources.bmj.com/bmj/authors/types-of-article/ research [13 November 2008].
    • (2008)
  • 6
    • 33846813595 scopus 로고    scopus 로고
    • Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: A Monte Carlo study
    • DOI 10.1002/sim.2618
    • Austin PC, Grootendorst P, Normand SLT, Anderson GM. Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study. Statistics in Medicine 2007; 26:754-768. (Pubitemid 46206594)
    • (2007) Statistics in Medicine , vol.26 , Issue.4 , pp. 754-768
    • Austin, P.C.1    Grootendorst, P.2    Normand, S.-L.T.3    Anderson, G.M.4
  • 7
    • 34249863765 scopus 로고    scopus 로고
    • The performance of different propensity score methods for estimating marginal odds ratios
    • Austin PC. The performance of different propensity score methods for estimating marginal odds ratios. Statistics in Medicine 2007; 26:3078-3094.
    • (2007) Statistics in Medicine , vol.26 , pp. 3078-3094
    • Austin, P.C.1
  • 8
    • 43049162150 scopus 로고    scopus 로고
    • The performance of different propensity score methods for estimating relative risks
    • Austin PC. The performance of different propensity score methods for estimating relative risks. Journal of Clinical Epidemiology 2008; 61:537-545.
    • (2008) Journal of Clinical Epidemiology , vol.61 , pp. 537-545
    • Austin, P.C.1
  • 9
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70:41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 10
    • 84949193513 scopus 로고
    • Reducing bias in observational studies using subclassification on the propensity score
    • Rosenbaum PR, Rubin DB. Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association 1984; 79:516-524.
    • (1984) Journal of the American Statistical Association , vol.79 , pp. 516-524
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 12
    • 44649173785 scopus 로고    scopus 로고
    • A critical appraisal of propensity score matching in the medical literature from 1996 to 2003
    • Austin PC. A critical appraisal of propensity score matching in the medical literature from 1996 to 2003. Statistics in Medicine 2008; 27:2037-2049.
    • (2008) Statistics in Medicine , vol.27 , pp. 2037-2049
    • Austin, P.C.1
  • 13
    • 35448972461 scopus 로고    scopus 로고
    • Propensity-score matching in the cardiovascular surgery literature from 2004-2006: A systematic review and suggestions for improvement
    • Austin PC. Propensity-score matching in the cardiovascular surgery literature from 2004-2006: a systematic review and suggestions for improvement. Journal of Thoracic and Cardiovascular Surgery 2007; 134:1128-1135.
    • (2007) Journal of Thoracic and Cardiovascular Surgery , vol.134 , pp. 1128-1135
    • Austin, P.C.1
  • 14
    • 67249139797 scopus 로고    scopus 로고
    • A report card on propensity-score matching in the cardiology literature from 2004-2006: Results of a systematic review
    • Austin PC. A report card on propensity-score matching in the cardiology literature from 2004-2006: results of a systematic review. Circulation: Cardiovascular Quality and Outcomes 2008; 1:62-67.
    • (2008) Circulation: Cardiovascular Quality and Outcomes , vol.1 , pp. 62-67
    • Austin, P.C.1
  • 15
    • 60849116685 scopus 로고    scopus 로고
    • Some methods of propensity-score matching had superior performance to others: Results of an empirical investigation and Monte Carlo simulations
    • Austin PC. Some methods of propensity-score matching had superior performance to others: results of an empirical investigation and Monte Carlo simulations. Biometrical Journal 2009; 51:171-184.
    • (2009) Biometrical Journal , vol.51 , pp. 171-184
    • Austin, P.C.1
  • 16
    • 67249097811 scopus 로고    scopus 로고
    • Type I error rates, coverage of confidence intervals, and variance estimation in propensity-score matched analyses
    • Article 13. DOI: 10.2202/1557-4679.1146
    • Austin PC. Type I error rates, coverage of confidence intervals, and variance estimation in propensity-score matched analyses. The International Journal of Biostatistics 2009; 5:Article 13. DOI: 10.2202/1557-4679.1146.
    • (2009) The International Journal of Biostatistics , vol.5
    • Austin, P.C.1
  • 17
    • 0347917301 scopus 로고    scopus 로고
    • Effects and non-effects of paired identical observations in comparing proportions with binary matched-pairs data
    • Agresti A, Min Y. Effects and non-effects of paired identical observations in comparing proportions with binary matched-pairs data. Statistics in Medicine 2004; 23:65-75.
    • (2004) Statistics in Medicine , vol.23 , pp. 65-75
    • Agresti, A.1    Min, Y.2
  • 18
    • 4444230264 scopus 로고    scopus 로고
    • Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study
    • DOI 10.1002/sim.1903
    • Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statistics in Medicine 2004; 23:2937-2960. (Pubitemid 39200133)
    • (2004) Statistics in Medicine , vol.23 , Issue.19 , pp. 2937-2960
    • Lunceford, J.K.1    Davidian, M.2
  • 20
    • 18844452973 scopus 로고    scopus 로고
    • Propensity score methods gave similar results to traditional regression modeling in observational studies: A systematic review
    • DOI 10.1016/j.jclinepi.2004.10.016, PII S0895435604003233
    • Shah BR, Laupacis A, Hux JE, Austin PC. Propensity score methods give similar results to traditional regression modeling in observational studies: a systematic review. Journal of Clinical Epidemiology 2005; 58:550-559. (Pubitemid 40692720)
    • (2005) Journal of Clinical Epidemiology , vol.58 , Issue.6 , pp. 550-559
    • Shah, B.R.1    Laupacis, A.2    Hux, J.E.3    Austin, P.C.4
  • 22
    • 0023203943 scopus 로고
    • Interpretation and choice of effect measures in epidemiologic analyses
    • Greenland S. Interpretation and choice of effect measures in epidemiologic analyses. American Journal of Epidemiology 1987; 125:761-768.
    • (1987) American Journal of Epidemiology , vol.125 , pp. 761-768
    • Greenland, S.1
  • 23
    • 77349087330 scopus 로고    scopus 로고
    • A data-generation process for data with specified risk differences or numbers needed to treat
    • in press
    • Austin PC. A data-generation process for data with specified risk differences or numbers needed to treat. Communications in Statistics - Simulation and Computation, in press.
    • Communications in Statistics - Simulation and Computation
    • Austin, P.C.1
  • 24
    • 47749131861 scopus 로고    scopus 로고
    • The performance of two data-generation processes for data with specified marginal treatment odds ratios
    • Austin PC, Stafford J. The performance of two data-generation processes for data with specified marginal treatment odds ratios. Communications in Statistics - Simulation and Computation 2008; 37:1039-1051.
    • (2008) Communications in Statistics - Simulation and Computation , vol.37 , pp. 1039-1051
    • Austin, P.C.1    Stafford, J.2
  • 25
    • 33745466638 scopus 로고    scopus 로고
    • A comparison of propensity score methods: A case-study estimating the effectiveness of post-AMI statin use
    • Austin PC, Mamdani MM. A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use. Statistics in Medicine 2006; 25:2084-2106.
    • (2006) Statistics in Medicine , vol.25 , pp. 2084-2106
    • Austin, P.C.1    Mamdani, M.M.2
  • 26
    • 33846842327 scopus 로고    scopus 로고
    • A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: A Monte Carlo study
    • DOI 10.1002/sim.2580
    • Austin PC, Grootendorst P, Anderson GM. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Statistics in Medicine 2007; 26:734-753. (Pubitemid 46206593)
    • (2007) Statistics in Medicine , vol.26 , Issue.4 , pp. 734-753
    • Austin, P.C.1    Grootendorst, P.2    Anderson, G.M.3
  • 29
    • 84865349347 scopus 로고
    • Standard distance in univariate and multivariate analysis
    • Flury BK, Riedwyl H. Standard distance in univariate and multivariate analysis. The American Statistician 1986; 40:249-251.
    • (1986) The American Statistician , vol.40 , pp. 249-251
    • Flury, B.K.1    Riedwyl, H.2
  • 30
    • 72749123968 scopus 로고    scopus 로고
    • A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: A review of trials published in leading medical journals
    • DOI: 10.1016/j.jclinepi.2009.06.002
    • Austin PC, Manca A, Zwarenstein M, Juurlink DN, Stanbrook MB. A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals. Journal of Clinical Epidemiology 2010; 63:142-153. DOI: 10.1016/j.jclinepi.2009.06.002.
    • (2010) Journal of Clinical Epidemiology , vol.63 , pp. 142-153
    • Austin, P.C.1    Manca, A.2    Zwarenstein, M.3    Juurlink, D.N.4    Stanbrook, M.B.5
  • 31
    • 72149119483 scopus 로고    scopus 로고
    • The relative ability of different propensity-score methods to balance measured covariates between treated and untreated subjects in observational studies
    • Austin PC. The relative ability of different propensity-score methods to balance measured covariates between treated and untreated subjects in observational studies. Medical Decision Making 2009; 29:661-677.
    • (2009) Medical Decision Making , vol.29 , pp. 661-677
    • Austin, P.C.1
  • 32
    • 70449365700 scopus 로고    scopus 로고
    • Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples
    • Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Statistics in Medicine 2009; 28:3083-3107.
    • (2009) Statistics in Medicine , vol.28 , pp. 3083-3107
    • Austin, P.C.1
  • 33
    • 10844272375 scopus 로고    scopus 로고
    • On principles for modeling propensity scores in medical research
    • Rubin DB. On principles for modeling propensity scores in medical research. Pharmacoepidemiology and Drug Safety 2004; 13:885-887.
    • (2004) Pharmacoepidemiology and Drug Safety , vol.13 , pp. 885-887
    • Rubin, D.B.1
  • 34
    • 1842429563 scopus 로고    scopus 로고
    • Nonparametric estimation of average treatment effects under exogeneity: A review
    • Imbens GW. Nonparametric estimation of average treatment effects under exogeneity: a review. The Review of Economics and Statistics 2004; 86:4-29.
    • (2004) The Review of Economics and Statistics , vol.86 , pp. 4-29
    • Imbens, G.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.