메뉴 건너뛰기




Volumn 20, Issue 3, 2011, Pages 317-320

The role of the c-statistic in variable selection for propensity score models

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CONCORDANCE STATISTICS; PRIORITY JOURNAL; PROPENSITY SCORE; SENSITIVITY ANALYSIS; STATISTICAL ANALYSIS;

EID: 79951981015     PISSN: 10538569     EISSN: 10991557     Source Type: Journal    
DOI: 10.1002/pds.2074     Document Type: Article
Times cited : (136)

References (32)
  • 1
    • 33645226210 scopus 로고    scopus 로고
    • A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods
    • Stürmer T, Joshi M, Glynn RJ, Avorn J, Rothman KJ, Schneeweiss S. A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods. J Clin Epidemiol 2006; 59(5): 437-447.
    • (2006) J Clin Epidemiol , vol.59 , Issue.5 , pp. 437-447
    • Stürmer, T.1    Joshi, M.2    Glynn, R.J.3    Avorn, J.4    Rothman, K.J.5    Schneeweiss, S.6
  • 2
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70(1): 41-55.
    • (1983) Biometrika , vol.70 , Issue.1 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 3
    • 77953607621 scopus 로고    scopus 로고
    • Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression
    • Westreich D, Lessler J, Funk MJ. Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression. J Clin Epidemiol 2010; 63(8): 826-833.
    • (2010) J Clin Epidemiol , vol.63 , Issue.8 , pp. 826-833
    • Westreich, D.1    Lessler, J.2    Funk, M.J.3
  • 4
    • 74749097452 scopus 로고    scopus 로고
    • Improving propensity score weighting using machine learning
    • Lee BK, Lessler J, Stuart EA. Improving propensity score weighting using machine learning. Stat Med 2010; 29(3): 337-346.
    • (2010) Stat Med , vol.29 , Issue.3 , pp. 337-346
    • Lee, B.K.1    Lessler, J.2    Stuart, E.A.3
  • 5
    • 3543135271 scopus 로고    scopus 로고
    • Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group
    • D'Agostino RB, Jr. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med 1998; 17(19): 2265-2281.
    • (1998) Stat Med , vol.17 , Issue.19 , pp. 2265-2281
    • D'Agostino Jr, R.B.1
  • 6
    • 0033567210 scopus 로고    scopus 로고
    • Invited commentary: propensity scores
    • Joffe MM, Rosenbaum PR. Invited commentary: propensity scores. Am J Epidemiol 1999; 150(4): 327-333.
    • (1999) Am J Epidemiol , vol.150 , Issue.4 , pp. 327-333
    • Joffe, M.M.1    Rosenbaum, P.R.2
  • 7
    • 17744378170 scopus 로고    scopus 로고
    • Analytic strategies to adjust confounding using exposure propensity scores and disease risk scores: nonsteroidal antiinflammatory drugs and short-term mortality in the elderly
    • Stürmer T, Schneeweiss S, Brookhart MA, Rothman KJ, Avorn J, Glynn RJ. Analytic strategies to adjust confounding using exposure propensity scores and disease risk scores: nonsteroidal antiinflammatory drugs and short-term mortality in the elderly. Am J Epidemiol 2005; 161(9): 891-898.
    • (2005) Am J Epidemiol , vol.161 , Issue.9 , pp. 891-898
    • Stürmer, T.1    Schneeweiss, S.2    Brookhart, M.A.3    Rothman, K.J.4    Avorn, J.5    Glynn, R.J.6
  • 8
    • 0030862072 scopus 로고    scopus 로고
    • Estimating causal effects from large data sets using propensity scores
    • 8 Pt 2
    • Rubin DB. Estimating causal effects from large data sets using propensity scores. Ann Intern Med 1997; 127 (8 Pt 2): 757-763.
    • (1997) Ann Intern Med , vol.127 , pp. 757-763
    • Rubin, D.B.1
  • 9
    • 33745842238 scopus 로고    scopus 로고
    • Estimating causal effects from epidemiological data
    • Hernán MA, Robins JM. Estimating causal effects from epidemiological data. J Epidemiol Community Health 2006; 60(7): 578-586.
    • (2006) J Epidemiol Community Health , vol.60 , Issue.7 , pp. 578-586
    • Hernán, M.A.1    Robins, J.M.2
  • 11
    • 0027717184 scopus 로고
    • Effects of misspecification of the propensity score on estimators of treatment effect
    • Drake C. Effects of misspecification of the propensity score on estimators of treatment effect. Biometrics 1993; 49: 1231-1236.
    • (1993) Biometrics , vol.49 , pp. 1231-1236
    • Drake, C.1
  • 12
    • 77951880684 scopus 로고    scopus 로고
    • Impact of ABO-incompatible listing on wait-list outcomes among infants listed for heart transplantation in the United States: a propensity analysis
    • Almond CS, Gauvreau K, Thiagarajan RR, et al. Impact of ABO-incompatible listing on wait-list outcomes among infants listed for heart transplantation in the United States: a propensity analysis. Circulation 2010; 121(17): 1926-1933.
    • (2010) Circulation , vol.121 , Issue.17 , pp. 1926-1933
    • Almond, C.S.1    Gauvreau, K.2    Thiagarajan, R.R.3
  • 13
    • 77952296240 scopus 로고    scopus 로고
    • Timing of erythropoiesis-stimulating agent initiation and adverse outcomes in nondialysis CKD: a propensity-matched observational study
    • Seliger S, Fox KM, Gandra SR, et al. Timing of erythropoiesis-stimulating agent initiation and adverse outcomes in nondialysis CKD: a propensity-matched observational study. Clin J Am Soc Nephrol 2010; 5(5): 882-888.
    • (2010) Clin J Am Soc Nephrol , vol.5 , Issue.5 , pp. 882-888
    • Seliger, S.1    Fox, K.M.2    Gandra, S.R.3
  • 14
    • 77949359267 scopus 로고    scopus 로고
    • The added risk of opioid problem use among treatment-seeking youth with marijuana and/or alcohol problem use
    • Subramaniam GA, Ives ML, Stitzer ML, Dennis ML. The added risk of opioid problem use among treatment-seeking youth with marijuana and/or alcohol problem use. Addiction 2010; 105(4): 686-698.
    • (2010) Addiction , vol.105 , Issue.4 , pp. 686-698
    • Subramaniam, G.A.1    Ives, M.L.2    Stitzer, M.L.3    Dennis, M.L.4
  • 15
    • 0041626110 scopus 로고    scopus 로고
    • Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders
    • Cepeda MS, Boston R, Farrar JT, Strom BL. Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders. Am J Epidemiol 2003; 158(3): 280-287.
    • (2003) Am J Epidemiol , vol.158 , Issue.3 , pp. 280-287
    • Cepeda, M.S.1    Boston, R.2    Farrar, J.T.3    Strom, B.L.4
  • 16
    • 33645210305 scopus 로고    scopus 로고
    • Indications for propensity scores and review of their use in pharmacoepidemiology
    • Glynn RJ, Schneeweiss S, Stürmer T. Indications for propensity scores and review of their use in pharmacoepidemiology. Basic Clin Pharmacol Toxicol 2006; 98(3): 253-259.
    • (2006) Basic Clin Pharmacol Toxicol , vol.98 , Issue.3 , pp. 253-259
    • Glynn, R.J.1    Schneeweiss, S.2    Stürmer, T.3
  • 17
    • 0035063108 scopus 로고    scopus 로고
    • Data design background knowledge in etiologic inference
    • Robins JM. Data design background knowledge in etiologic inference. Epidemiology 2000; 11(3): 313-320.
    • (2000) Epidemiology , vol.11 , Issue.3 , pp. 313-320
    • Robins, J.M.1
  • 18
    • 77953632279 scopus 로고    scopus 로고
    • Confounding control in healthcare database research: challenges and potential approaches
    • Brookhart MA, Stürmer T, Glynn RJ, Rassen J, Schneeweiss S. Confounding control in healthcare database research: challenges and potential approaches. Medical Care 2010; 48 (6 Suppl 1): S114-120.
    • (2010) Medical Care , vol.48 , Issue.6 SUPPL. 1
    • Brookhart, M.A.1    Stürmer, T.2    Glynn, R.J.3    Rassen, J.4    Schneeweiss, S.5
  • 19
    • 0038334174 scopus 로고    scopus 로고
    • Quantifying biases in causal models: classical confounding vs collider-stratification bias
    • Greenland S. Quantifying biases in causal models: classical confounding vs collider-stratification bias. Epidemiology 2003; 14(3): 300-306.
    • (2003) Epidemiology , vol.14 , Issue.3 , pp. 300-306
    • Greenland, S.1
  • 20
    • 77952717253 scopus 로고    scopus 로고
    • Illustrating bias due to conditioning on a collider
    • Cole SR, Platt RW, Schisterman EF, et al. Illustrating bias due to conditioning on a collider. Int J Epidemiol 2010; 39(2): 417-420.
    • (2010) Int J Epidemiol , vol.39 , Issue.2 , pp. 417-420
    • Cole, S.R.1    Platt, R.W.2    Schisterman, E.F.3
  • 21
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982; 143(1): 29-36.
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 22
    • 0003732572 scopus 로고    scopus 로고
    • Regression Modeling Strategies
    • Springer-Verlag: New York City,
    • Harrell FEJ. Regression Modeling Strategies. Springer-Verlag: New York City, 2001.
    • (2001)
    • Harrell, F.E.J.1
  • 23
    • 10844259913 scopus 로고    scopus 로고
    • Principles for modeling propensity scores in medical research: a systematic literature review
    • Weitzen S, Lapane KL, Toledano AY, Hume AL, Mor V. Principles for modeling propensity scores in medical research: a systematic literature review. Pharmacoepidemiol Drug Saf 2004; 13(12): 841-853.
    • (2004) Pharmacoepidemiol Drug Saf , vol.13 , Issue.12 , pp. 841-853
    • Weitzen, S.1    Lapane, K.L.2    Toledano, A.Y.3    Hume, A.L.4    Mor, V.5
  • 24
    • 77949377342 scopus 로고    scopus 로고
    • Invited commentary: positivity in practice
    • Westreich D, Cole SR. Invited commentary: positivity in practice. Am J Epidemiol 2010; 171(6): 678-681.
    • (2010) Am J Epidemiol , vol.171 , Issue.6 , pp. 678-681
    • Westreich, D.1    Cole, S.R.2
  • 25
    • 51749124303 scopus 로고    scopus 로고
    • Constructing inverse probability weights for marginal structural models
    • Cole SR, Hernán MA. Constructing inverse probability weights for marginal structural models. Am J Epidemiol 2008; 168(6): 656-664.
    • (2008) Am J Epidemiol , vol.168 , Issue.6 , pp. 656-664
    • Cole, S.R.1    Hernán, M.A.2
  • 26
    • 33846842327 scopus 로고    scopus 로고
    • A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study
    • Austin PC, Grootendorst P, Anderson GM. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Stat Med 2007; 26(4): 734-753.
    • (2007) Stat Med , vol.26 , Issue.4 , pp. 734-753
    • Austin, P.C.1    Grootendorst, P.2    Anderson, G.M.3
  • 27
    • 17244379268 scopus 로고    scopus 로고
    • Weaknesses of goodness-of-fit tests for evaluating propensity score models: the case of the omitted confounder
    • Weitzen S, Lapane KL, Toledano AY, Hume AL, Mor V. Weaknesses of goodness-of-fit tests for evaluating propensity score models: the case of the omitted confounder. Pharmacoepidemiol Drug Saf 2005; 14(4): 227-238.
    • (2005) Pharmacoepidemiol Drug Saf , vol.14 , Issue.4 , pp. 227-238
    • Weitzen, S.1    Lapane, K.L.2    Toledano, A.Y.3    Hume, A.L.4    Mor, V.5
  • 28
    • 70449365700 scopus 로고    scopus 로고
    • Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples
    • Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med 2009; 28(25): 3083-3107.
    • (2009) Stat Med , vol.28 , Issue.25 , pp. 3083-3107
    • Austin, P.C.1
  • 29
    • 33846253571 scopus 로고    scopus 로고
    • The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials
    • Rubin DB. The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials. Stat Med 2007; 26(1): 20-36.
    • (2007) Stat Med , vol.26 , Issue.1 , pp. 20-36
    • Rubin, D.B.1
  • 30
    • 79951987589 scopus 로고    scopus 로고
    • Unified cross-validation methodology for selection among estimators and a general cross-validated adaptive epsilon-net estimator: finite sample oracle inequalities and examples. U. C. Berkeley Division of Bio- statistics Working Paper Series, paper 130,
    • van der Laan MJ, Dudoit S. Unified cross-validation methodology for selection among estimators and a general cross-validated adaptive epsilon-net estimator: finite sample oracle inequalities and examples. U. C. Berkeley Division of Bio- statistics Working Paper Series, paper 130, 2003.
    • (2003)
    • van der Laan, M.J.1    Dudoit, S.2
  • 31
    • 24944533309 scopus 로고    scopus 로고
    • A semiparametric model selection criterion with applications to the marginal structural model
    • Brookhart MA, van der Laan MJ. A semiparametric model selection criterion with applications to the marginal structural model. Comput Stat Data Anal 2006; 50: 475-498.
    • (2006) Comput Stat Data Anal , vol.50 , pp. 475-498
    • Brookhart, M.A.1    van der Laan, M.J.2
  • 32
    • 0037080447 scopus 로고    scopus 로고
    • Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology
    • Hernán MA, Hernández-Diaz S, Werler MM, Mitchell AA. Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am J Epidemiol 2002; 155(2): 176-184.
    • (2002) Am J Epidemiol , vol.155 , Issue.2 , pp. 176-184
    • Hernán, M.A.1    Hernández-Diaz, S.2    Werler, M.M.3    Mitchell, A.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.