-
2
-
-
2942731012
-
An extensive empirical study of feature selection metrics for text classification
-
G. Forman, "An extensive empirical study of feature selection metrics for text classification," J. Mach. Learn. Res., vol. 3, pp. 1289-1305, 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1289-1305
-
-
Forman, G.1
-
3
-
-
0035964792
-
Distributed and overlapping representations of faces and objects in ventral temporal cortex
-
Sep.
-
J. V. Haxby, M. I. Gobbini, M. L. Furey, A. Ishai, J. L. Schouten, and P. Pietrini, "Distributed and overlapping representations of faces and objects in ventral temporal cortex," Sci., vol. 293, pp. 2425-2430, Sep. 2001.
-
(2001)
Sci.
, vol.293
, pp. 2425-2430
-
-
Haxby, J.V.1
Gobbini, M.I.2
Furey, M.L.3
Ishai, A.4
Schouten, J.L.5
Pietrini, P.6
-
4
-
-
33748178966
-
Beyond mind-reading: Multi-voxel pattern analysis of fMRI data
-
Sep.
-
K. A. Norman, S. M. Polyn, G. J. Detre, and J. V. Haxby, "Beyond mind-reading: Multi-voxel pattern analysis of fMRI data," Trends Cognit. Sci., vol. 10, pp. 424-430, Sep. 2006.
-
(2006)
Trends Cognit. Sci.
, vol.10
, pp. 424-430
-
-
Norman, K.A.1
Polyn, S.M.2
Detre, G.J.3
Haxby, J.V.4
-
5
-
-
65549168742
-
Machine learning classifiers and fMRI: A tutorial overview
-
Mar.
-
F. Pereira, T. Mitchell, and M. Botvinick, "Machine learning classifiers and fMRI: A tutorial overview," NeuroImage, vol. 45, pp. S199-S209, Mar. 2009.
-
(2009)
NeuroImage
, vol.45
, pp. S199-S209
-
-
Pereira, F.1
Mitchell, T.2
Botvinick, M.3
-
7
-
-
0003076895
-
Feature selection for high-dimensional genomic microarray data
-
E. P. Xing, M. I. Jordan, and R. M. Karp, "Feature selection for high-dimensional genomic microarray data," in Proc. Int. Workshop Mach. Learn., 2001, pp. 601-608.
-
(2001)
Proc. Int. Workshop Mach. Learn.
, pp. 601-608
-
-
Xing, E.P.1
Jordan, M.I.2
Karp, R.M.3
-
8
-
-
51849141504
-
1-bit compressive sensing
-
presented at the
-
P. T. Boufounos and R. G. Baraniuk, "1-bit compressive sensing," presented at the Conf. Inf. Sci. Sys., Princeton, NJ, USA, Mar. 2008.
-
Conf. Inf. Sci. Sys., Princeton, NJ, USA, Mar.2008
-
-
Boufounos, P.T.1
Baraniuk, R.G.2
-
9
-
-
84871749706
-
Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach
-
Y. Plan and R.Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach," IEEE Trans. Inf. Theory, vol. 59, no. 1, pp. 482-494, 2013.
-
(2013)
IEEE Trans. Inf. Theory
, vol.59
, Issue.1
, pp. 482-494
-
-
Plan, Y.1
Vershynin, R.2
-
10
-
-
0000012317
-
Toward optimal feature selection
-
th Int. Conf.Mach. Learn. (ICML), Bari, Italy, 1996, pp. 284-292.
-
th Int. Conf.Mach. Learn. (ICML), Bari, Italy, 1996
, pp. 284-292
-
-
Koller, D.1
Sahami, M.2
Saitta, L.3
-
11
-
-
0031381525
-
Wrapper for feature subset selection
-
R. Kohavi and G. John, "Wrapper for feature subset selection," Artif. Intell., vol. 97, pp. 273-324, 1997.
-
(1997)
Artif. Intell.
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.2
-
12
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
M. E. Tipping, "Sparse Bayesian learning and the relevance vector machine," J. Mach. Learn. Res., vol. 1, pp. 211-244, 2001.
-
(2001)
J. Mach. Learn. Res.
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
13
-
-
0141460296
-
Adaptive sparseness using Jeffreys' prior
-
th Conf. Adv. Neural Inf. Process. Syst., Cambridge, MA, USA, 2001, pp. 697-704.
-
th Conf. Adv. Neural Inf. Process. Syst., Cambridge, MA, USA, 2001
, pp. 697-704
-
-
Figueiredo, M.1
-
14
-
-
0141836275
-
Adaptive sparseness for supervised learning
-
(PAMI)
-
M. Figueiredo, "Adaptive sparseness for supervised learning," IEEE Trans. Pattern Anal. Mach. Intell. (PAMI), vol. 25, no. 9, pp. 1150-1159, 2003.
-
(2003)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.25
, Issue.9
, pp. 1150-1159
-
-
Figueiredo, M.1
-
15
-
-
34248137881
-
On Bayesian classification with Laplace priors
-
A. Kabán, "On Bayesian classification with Laplace priors," Pattern Recognit. Lett., vol. 28, no. 10, pp. 1271-1282, 2007.
-
(2007)
Pattern Recognit. Lett.
, vol.28
, Issue.10
, pp. 1271-1282
-
-
Kabán, A.1
-
16
-
-
67649380729
-
Probabilistic classification vector machines
-
H. Chen, P. Tino, and X. Yao, "Probabilistic classification vector machines," IEEE Trans. Neural Net., vol. 20, no. 6, pp. 901-914, 2009.
-
(2009)
IEEE Trans. Neural Net.
, vol.20
, Issue.6
, pp. 901-914
-
-
Chen, H.1
Tino, P.2
Yao, X.3
-
17
-
-
79551500651
-
A comparison of optimization methods and software for large-scale L1-regularized linear classification
-
G.-X. Yuan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin, "A comparison of optimization methods and software for large-scale L1-regularized linear classification," J. Mach. Learn. Res., vol. 11, pp. 3183-3234, 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3183-3234
-
-
Yuan, G.-X.1
Chang, K.-W.2
Hsieh, C.-J.3
Lin, C.-J.4
-
18
-
-
77955706517
-
Sample complexity for 1-bit compressed sensing and sparse classification
-
presented at the
-
A. Gupta, R. Nowak, and B. Recht, "Sample complexity for 1-bit compressed sensing and sparse classification," presented at the Int. Symp. Inf. Theory (ISIT), Austin, TX, 2010.
-
Int. Symp. Inf. Theory (ISIT), Austin, TX, 2010
-
-
Gupta, A.1
Nowak, R.2
Recht, B.3
-
19
-
-
80054064510
-
Trust, but verify: Fast and accurate signal recovery from 1-bit compressive measurements
-
J. N. Laska, Z. Wen, W. Yin, and R. G. Baraniuk, "Trust, but verify: Fast and accurate signal recovery from 1-bit compressive measurements," IEEE Trans. Signal Process., vol. 59, no. 11, pp. 5289-5301, 2011.
-
(2011)
IEEE Trans. Signal Process
, vol.59
, Issue.11
, pp. 5289-5301
-
-
Laska, J.N.1
Wen, Z.2
Yin, W.3
Baraniuk, R.G.4
-
20
-
-
84864610333
-
One-bit measurements with adaptive thresholds
-
U. S. Kamilov, A. Bourquard, A. Amini, and M. Unser, "One-bit measurements with adaptive thresholds," IEEE Signal Process. Lett., vol. 19, pp. 607-610, 2012.
-
(2012)
IEEE Signal Process. Lett.
, vol.19
, pp. 607-610
-
-
Kamilov, U.S.1
Bourquard, A.2
Amini, A.3
Unser, M.4
-
21
-
-
84870556194
-
Message-passing de-quantization with applications to compressed sensing
-
Dec.
-
U. S. Kamilov, V. K. Goyal, and S. Rangan, "Message-passing de-quantization with applications to compressed sensing," IEEE Trans. Signal Process., vol. 60, pp. 6270-6281, Dec. 2012.
-
(2012)
IEEE Trans. Signal Process.
, vol.60
, pp. 6270-6281
-
-
Kamilov, U.S.1
Goyal, V.K.2
Rangan, S.3
-
22
-
-
80054799706
-
Generalized approximate message passing for estimation with random linear mixing
-
S. Rangan, "Generalized approximate message passing for estimation with random linear mixing," in Proc. IEEE Int. Symp. Inf. Theory, St. Petersburg, Russia, Aug. 2011, pp. 2168-2172.
-
Proc. IEEE Int. Symp. Inf. Theory, St. Petersburg, Russia, Aug.2011
, pp. 2168-2172
-
-
Rangan, S.1
-
23
-
-
73149095169
-
Message passing algorithms for compressed sensing
-
D. L. Donoho, A. Maleki, and A. Montanari, "Message passing algorithms for compressed sensing," in Proc. Nat. Acad. Sci., Nov. 2009, vol. 106, pp. 18914-18919.
-
Proc.Nat. Acad. Sci., Nov.2009
, vol.106
, pp. 18914-18919
-
-
Donoho, D.L.1
Maleki, A.2
Montanari, A.3
-
24
-
-
77954825041
-
Message passing algorithms for compressed sensing: I. Motivation and construction
-
D. L. Donoho, A. Maleki, and A. Montanari, "Message passing algorithms for compressed sensing: I. Motivation and construction," in Proc. Inf. Theory Workshop, Jan. 2010, pp. 1-5.
-
Proc. Inf. Theory Workshop, Jan.2010
, pp. 1-5
-
-
Donoho, D.L.1
Maleki, A.2
Montanari, A.3
-
25
-
-
84969891693
-
State evolution for general approximate message passing algorithms, with applications to spatial coupling
-
A. Javanmard and A. Montanari, "State evolution for general approximate message passing algorithms, with applications to spatial coupling," Inf. Inference, vol. 2, no. 2, pp. 115-144, 2013.
-
(2013)
Inf. Inference
, vol.2
, Issue.2
, pp. 115-144
-
-
Javanmard, A.1
Montanari, A.2
-
26
-
-
84868222706
-
A generalized framework for learning and recovery of structured sparse signals
-
presented at the
-
J. Ziniel, S. Rangan, and P. Schniter, "A generalized framework for learning and recovery of structured sparse signals," presented at the IEEE Statist. Signal Process. Workshop, Ann Arbor, MI, USA, Aug. 2012.
-
IEEE Statist. Signal Process. Workshop, Ann Arbor, MI, USA, Aug.2012
-
-
Ziniel, J.1
Rangan, S.2
Schniter, P.3
-
27
-
-
84883317968
-
Expectation-Maximization Gaussian-mixture approximate message passing
-
Oct.
-
J. P. Vila and P. Schniter, "Expectation-Maximization Gaussian-mixture approximate message passing," IEEE Trans. Signal Process., vol. 61, pp. 4658-4672, Oct. 2013.
-
(2013)
IEEE Trans. Signal Process
, vol.61
, pp. 4658-4672
-
-
Vila, J.P.1
Schniter, P.2
-
28
-
-
77953689056
-
Turbo reconstruction of structured sparse signals
-
P. Schniter, "Turbo reconstruction of structured sparse signals," in Proc. Conf. Inf. Sci. Syst. (CISS), Princeton, NJ, USA, Mar. 2010, pp. 1-6.
-
Proc. Conf. Inf. Sci. Syst. (CISS), Princeton, NJ, USA, Mar.2010
, pp. 1-6
-
-
Schniter, P.1
-
29
-
-
84898964205
-
A revolution: Belief propagation in graphs with cycles
-
B. J. Frey and D. J. C. MacKay, "A revolution: Belief propagation in graphs with cycles," Adv. Neural Inf. Process. Syst., pp. 479-485, 1998.
-
(1998)
Adv. Neural Inf. Process. Syst
, pp. 479-485
-
-
Frey, B.J.1
MacKay, D.J.C.2
-
30
-
-
0035246564
-
Factor graphs and the sum-product algorithm
-
Feb.
-
F. R. Kschischang, B. J. Frey, and H. A. Loeliger, "Factor graphs and the sum-product algorithm," IEEE Trans. Inf. Theory, vol. 47, pp. 498-519, Feb. 2001.
-
(2001)
IEEE Trans. Inf. Theory
, vol.47
, pp. 498-519
-
-
Kschischang, F.R.1
Frey, B.J.2
Loeliger, H.A.3
-
31
-
-
0032001728
-
Turbo decoding as an instance of Pearl's belief propagation algorithm
-
Feb.
-
R. J. McEliece, D. J. C. MacKay, and J. Cheng, "Turbo decoding as an instance of Pearl's belief propagation algorithm," IEEE J. Sel. Areas Commun., vol. 16, pp. 140-152, Feb. 1998.
-
(1998)
IEEE J. Sel. Areas Commun.
, vol.16
, pp. 140-152
-
-
McEliece, R.J.1
MacKay, D.J.C.2
Cheng, J.3
-
32
-
-
0034291933
-
Learning low-level vision
-
Oct.
-
W. T. Freeman, E. C. Pasztor, and O. T. Carmichael, "Learning low-level vision," Int. . J. Comput. Vis., vol. 40, pp. 25-47, Oct. 2000.
-
(2000)
Int.. J. Comput. Vis.
, vol.40
, pp. 25-47
-
-
Freeman, W.T.1
Pasztor, E.C.2
Carmichael, O.T.3
-
33
-
-
84890407253
-
Fixed points of generalized approximate message passing with arbitrary matrices
-
S. Rangan, P. Schniter, E. Riegler, A. K. Fletcher, and V. Cevher, "Fixed points of generalized approximate message passing with arbitrary matrices," in Proc. IEEE Int. Symp. Inf. Theory, Istanbul, Jul. 2013, pp. 664-668.
-
Proc. IEEE Int. Symp. Inf. Theory, Istanbul, Jul.2013
, pp. 664-668
-
-
Rangan, S.1
Schniter, P.2
Riegler, E.3
Fletcher, A.K.4
Cevher, V.5
-
34
-
-
84906541692
-
On the convergence of generalized approximate message passing with arbitrary matrices
-
S. Rangan, P. Schniter, and A. Fletcher, "On the convergence of generalized approximate message passing with arbitrary matrices," in Proc. IEEE Int. Symp. Inf. Theory, Honolulu, HI, USA, Jul. 2014, pp. 236-240.
-
Proc. IEEE Int. Symp. Inf. Theory, Honolulu, HI, USA, Jul.2014
, pp. 236-240
-
-
Rangan, S.1
Schniter, P.2
Fletcher, A.3
-
35
-
-
85032780651
-
An introduction to factor graphs
-
Jan.
-
H.-A. Loeliger, "An introduction to factor graphs," IEEE Signal Process. Mag., vol. 21, pp. 28-41, Jan. 2004.
-
(2004)
IEEE Signal Process. Mag.
, vol.21
, pp. 28-41
-
-
Loeliger, H.-A.1
-
36
-
-
84901439268
-
-
Ph.D. dissertation, The Ohio State Univ., Columbus, OH, USA
-
J. Ziniel, "Message passing approaches to compressive inference under structured signal priors," Ph.D. dissertation, The Ohio State Univ., Columbus, OH, USA, 2014.
-
(2014)
Message Passing Approaches to Compressive Inference under Structured Signal Priors
-
-
Ziniel, J.1
-
37
-
-
0003841602
-
Why the logistic function? A tutorial discussion on probabilities and neural networks
-
Cambridge, MA, USA, Tech. Rep. 9503, Aug. 13
-
M. I. Jordan, "Why the logistic function? A tutorial discussion on probabilities and neural networks," MIT Comput. Congnit. Sci., Cambridge, MA, USA, Tech. Rep. 9503, Aug. 13, 1995.
-
(1995)
MIT Comput. Congnit. Sci.
-
-
Jordan, M.I.1
-
39
-
-
1542365112
-
Dimensionality reduction via sparse support vector machines
-
J. Bi, K. Bennett, M. Embrechts, C. Breneman, and M. Song, "Dimensionality reduction via sparse support vector machines," J. Mach. Learn. Res., vol. 3, pp. 1229-1243, 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1229-1243
-
-
Bi, J.1
Bennett, K.2
Embrechts, M.3
Breneman, C.4
Song, M.5
-
40
-
-
0002755771
-
-
Cambridge, MA, USA: MIT Press ch. 17
-
M. Opper and O. Winther, Gaussian Processes and SVM: Mean Field Results and Leave-One-Out Estimator . Cambridge, MA, USA: MIT Press, 2000, ch. 17, pp. 311-326.
-
(2000)
Gaussian Processes and SVM: Mean Field Results and Leave-One-Out Estimator
, pp. 311-326
-
-
Opper, M.1
Winther, O.2
-
41
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
H. Zou and T. Hastie, "Regularization and variable selection via the elastic net," J. Roy. Statist. Soc., B, vol. 67, no. 2, pp. 301-320, 2005.
-
(2005)
J. Roy. Statist. Soc., B
, vol.67
, Issue.2
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
42
-
-
0033886806
-
Text classification from labeled and unlabeled documents using EM
-
A. K. Nigam, K. McCallum, S. Thrun, and T.Mitchell, "Text classification from labeled and unlabeled documents using EM," Mach. Learn., vol. 39, pp. 103-134, 2000.
-
(2000)
Mach. Learn.
, vol.39
, pp. 103-134
-
-
Nigam, A.K.1
McCallum, K.2
Thrun, S.3
Mitchell, T.4
-
43
-
-
84906489211
-
An empirical-Bayes approach to recovering linearly constrained non-negative sparse signals
-
Sep.
-
J. P. Vila and P. Schniter, "An empirical-Bayes approach to recovering linearly constrained non-negative sparse signals," IEEE Trans. Signal Process., vol. 62, pp. 4689-4703, Sep. 2014.
-
(2014)
IEEE Trans. Signal Process.
, vol.62
, pp. 4689-4703
-
-
Vila, J.P.1
Schniter, P.2
-
44
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," J. Roy. Statist. Soc., B, vol. 39, pp. 1-38, 1977.
-
(1977)
J. Roy. Statist. Soc., B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
45
-
-
84877769740
-
Approximate message passing with consistent parameter estimation and applications to sparse learning
-
U. S. Kamilov, S. Rangan, A. K. Fletcher, and M. Unser, "Approximate message passing with consistent parameter estimation and applications to sparse learning," in Proc. Neural Inf. Process. Syst. Conf., Lake Tahoe, NV, USA, Dec. 2012, pp. 2447-2455.
-
Proc. Neural Inf. Process. Syst. Conf., Lake Tahoe, NV, USA, Dec.2012
-
-
Kamilov, U.S.1
Rangan, S.2
Fletcher, A.K.3
Unser, M.4
-
46
-
-
84876811202
-
RCV1: A new benchmark collection for text categorization research
-
D. D. Lewis,Y.Yang, T.G. Rose, and F. Li, "RCV1: A new benchmark collection for text categorization research," J. Mach. Learn. Res., vol. 5, pp. 361-397, 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 361-397
-
-
Lewis, D.D.1
Yang, Y.2
Rose, T.G.3
Li, F.4
-
47
-
-
34547982357
-
Trust region Newton methods for large-scale logistic regression
-
th Int. Conf. Mach. Learn., Corvallis, OR, USA, 2007, pp. 561-568.
-
th Int. Conf. Mach. Learn., Corvallis, OR, USA, 2007
, pp. 561-568
-
-
Lin, C.1
Weng, R.C.2
Keerthi, S.S.3
-
48
-
-
84856004485
-
Templates for convex cone problems with applications to sparse signal recovery
-
S. R. Becker, E. J. Candès, and M. C. Grant, "Templates for convex cone problems with applications to sparse signal recovery," Math. Prog. Comput., vol. 3, no. 3, pp. 165-218, 2011.
-
(2011)
Math. Prog. Comput.
, vol.3
, Issue.3
, pp. 165-218
-
-
Becker, S.R.1
Candès, E.J.2
Grant, M.C.3
-
49
-
-
0033436056
-
Newton's method for large-scale bound constrained problems
-
C. J. Lin and J. J. Moré, "Newton's method for large-scale bound constrained problems," SIAM J. Optim., vol. 9, pp. 1100-1127, 1999.
-
(1999)
SIAM J. Optim.
, vol.9
, pp. 1100-1127
-
-
Lin, C.J.1
Moré, J.J.2
-
50
-
-
84875716638
-
Compressive phase retrieval via generalized approximate message passing
-
presented at the
-
P. Schniter and S. Rangan, "Compressive phase retrieval via generalized approximate message passing," presented at the Allerton Conf. Commun., Control, Comput., Monticello, IL, USA, Oct. 2012.
-
Allerton Conf. Commun., Control, Comput., Monticello, IL, USA, Oct.2012
-
-
Schniter, P.1
Rangan, S.2
-
51
-
-
0033481631
-
Mean and variance of truncated normal distributions
-
Nov.
-
D. R. Barr and E. T. Sherrill, "Mean and variance of truncated normal distributions," Amer. Statist., vol. 53, Nov. 1999.
-
(1999)
Amer. Statist.
, vol.53
-
-
Barr, D.R.1
Sherrill, E.T.2
|