메뉴 건너뛰기




Volumn 63, Issue 8, 2015, Pages 2020-2032

Binary Linear Classification and Feature Selection via Generalized Approximate Message Passing

Author keywords

Belief propagation; classification; feature selection; message passing; one bit compressed sensing

Indexed keywords

ALGORITHMS; CHANNEL ESTIMATION; COMPRESSED SENSING; FEATURE EXTRACTION; IMAGE SEGMENTATION; MAXIMUM PRINCIPLE; MESSAGE PASSING; SIGNAL RECONSTRUCTION;

EID: 84925193449     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSP.2015.2407311     Document Type: Article
Times cited : (17)

References (51)
  • 2
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • G. Forman, "An extensive empirical study of feature selection metrics for text classification," J. Mach. Learn. Res., vol. 3, pp. 1289-1305, 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 3
    • 0035964792 scopus 로고    scopus 로고
    • Distributed and overlapping representations of faces and objects in ventral temporal cortex
    • Sep.
    • J. V. Haxby, M. I. Gobbini, M. L. Furey, A. Ishai, J. L. Schouten, and P. Pietrini, "Distributed and overlapping representations of faces and objects in ventral temporal cortex," Sci., vol. 293, pp. 2425-2430, Sep. 2001.
    • (2001) Sci. , vol.293 , pp. 2425-2430
    • Haxby, J.V.1    Gobbini, M.I.2    Furey, M.L.3    Ishai, A.4    Schouten, J.L.5    Pietrini, P.6
  • 4
    • 33748178966 scopus 로고    scopus 로고
    • Beyond mind-reading: Multi-voxel pattern analysis of fMRI data
    • Sep.
    • K. A. Norman, S. M. Polyn, G. J. Detre, and J. V. Haxby, "Beyond mind-reading: Multi-voxel pattern analysis of fMRI data," Trends Cognit. Sci., vol. 10, pp. 424-430, Sep. 2006.
    • (2006) Trends Cognit. Sci. , vol.10 , pp. 424-430
    • Norman, K.A.1    Polyn, S.M.2    Detre, G.J.3    Haxby, J.V.4
  • 5
    • 65549168742 scopus 로고    scopus 로고
    • Machine learning classifiers and fMRI: A tutorial overview
    • Mar.
    • F. Pereira, T. Mitchell, and M. Botvinick, "Machine learning classifiers and fMRI: A tutorial overview," NeuroImage, vol. 45, pp. S199-S209, Mar. 2009.
    • (2009) NeuroImage , vol.45 , pp. S199-S209
    • Pereira, F.1    Mitchell, T.2    Botvinick, M.3
  • 7
    • 0003076895 scopus 로고    scopus 로고
    • Feature selection for high-dimensional genomic microarray data
    • E. P. Xing, M. I. Jordan, and R. M. Karp, "Feature selection for high-dimensional genomic microarray data," in Proc. Int. Workshop Mach. Learn., 2001, pp. 601-608.
    • (2001) Proc. Int. Workshop Mach. Learn. , pp. 601-608
    • Xing, E.P.1    Jordan, M.I.2    Karp, R.M.3
  • 9
    • 84871749706 scopus 로고    scopus 로고
    • Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach
    • Y. Plan and R.Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach," IEEE Trans. Inf. Theory, vol. 59, no. 1, pp. 482-494, 2013.
    • (2013) IEEE Trans. Inf. Theory , vol.59 , Issue.1 , pp. 482-494
    • Plan, Y.1    Vershynin, R.2
  • 11
    • 0031381525 scopus 로고    scopus 로고
    • Wrapper for feature subset selection
    • R. Kohavi and G. John, "Wrapper for feature subset selection," Artif. Intell., vol. 97, pp. 273-324, 1997.
    • (1997) Artif. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 12
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • M. E. Tipping, "Sparse Bayesian learning and the relevance vector machine," J. Mach. Learn. Res., vol. 1, pp. 211-244, 2001.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 14
    • 0141836275 scopus 로고    scopus 로고
    • Adaptive sparseness for supervised learning
    • (PAMI)
    • M. Figueiredo, "Adaptive sparseness for supervised learning," IEEE Trans. Pattern Anal. Mach. Intell. (PAMI), vol. 25, no. 9, pp. 1150-1159, 2003.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , Issue.9 , pp. 1150-1159
    • Figueiredo, M.1
  • 15
    • 34248137881 scopus 로고    scopus 로고
    • On Bayesian classification with Laplace priors
    • A. Kabán, "On Bayesian classification with Laplace priors," Pattern Recognit. Lett., vol. 28, no. 10, pp. 1271-1282, 2007.
    • (2007) Pattern Recognit. Lett. , vol.28 , Issue.10 , pp. 1271-1282
    • Kabán, A.1
  • 16
    • 67649380729 scopus 로고    scopus 로고
    • Probabilistic classification vector machines
    • H. Chen, P. Tino, and X. Yao, "Probabilistic classification vector machines," IEEE Trans. Neural Net., vol. 20, no. 6, pp. 901-914, 2009.
    • (2009) IEEE Trans. Neural Net. , vol.20 , Issue.6 , pp. 901-914
    • Chen, H.1    Tino, P.2    Yao, X.3
  • 17
    • 79551500651 scopus 로고    scopus 로고
    • A comparison of optimization methods and software for large-scale L1-regularized linear classification
    • G.-X. Yuan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin, "A comparison of optimization methods and software for large-scale L1-regularized linear classification," J. Mach. Learn. Res., vol. 11, pp. 3183-3234, 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3183-3234
    • Yuan, G.-X.1    Chang, K.-W.2    Hsieh, C.-J.3    Lin, C.-J.4
  • 19
    • 80054064510 scopus 로고    scopus 로고
    • Trust, but verify: Fast and accurate signal recovery from 1-bit compressive measurements
    • J. N. Laska, Z. Wen, W. Yin, and R. G. Baraniuk, "Trust, but verify: Fast and accurate signal recovery from 1-bit compressive measurements," IEEE Trans. Signal Process., vol. 59, no. 11, pp. 5289-5301, 2011.
    • (2011) IEEE Trans. Signal Process , vol.59 , Issue.11 , pp. 5289-5301
    • Laska, J.N.1    Wen, Z.2    Yin, W.3    Baraniuk, R.G.4
  • 21
    • 84870556194 scopus 로고    scopus 로고
    • Message-passing de-quantization with applications to compressed sensing
    • Dec.
    • U. S. Kamilov, V. K. Goyal, and S. Rangan, "Message-passing de-quantization with applications to compressed sensing," IEEE Trans. Signal Process., vol. 60, pp. 6270-6281, Dec. 2012.
    • (2012) IEEE Trans. Signal Process. , vol.60 , pp. 6270-6281
    • Kamilov, U.S.1    Goyal, V.K.2    Rangan, S.3
  • 24
  • 25
    • 84969891693 scopus 로고    scopus 로고
    • State evolution for general approximate message passing algorithms, with applications to spatial coupling
    • A. Javanmard and A. Montanari, "State evolution for general approximate message passing algorithms, with applications to spatial coupling," Inf. Inference, vol. 2, no. 2, pp. 115-144, 2013.
    • (2013) Inf. Inference , vol.2 , Issue.2 , pp. 115-144
    • Javanmard, A.1    Montanari, A.2
  • 27
    • 84883317968 scopus 로고    scopus 로고
    • Expectation-Maximization Gaussian-mixture approximate message passing
    • Oct.
    • J. P. Vila and P. Schniter, "Expectation-Maximization Gaussian-mixture approximate message passing," IEEE Trans. Signal Process., vol. 61, pp. 4658-4672, Oct. 2013.
    • (2013) IEEE Trans. Signal Process , vol.61 , pp. 4658-4672
    • Vila, J.P.1    Schniter, P.2
  • 29
    • 84898964205 scopus 로고    scopus 로고
    • A revolution: Belief propagation in graphs with cycles
    • B. J. Frey and D. J. C. MacKay, "A revolution: Belief propagation in graphs with cycles," Adv. Neural Inf. Process. Syst., pp. 479-485, 1998.
    • (1998) Adv. Neural Inf. Process. Syst , pp. 479-485
    • Frey, B.J.1    MacKay, D.J.C.2
  • 31
    • 0032001728 scopus 로고    scopus 로고
    • Turbo decoding as an instance of Pearl's belief propagation algorithm
    • Feb.
    • R. J. McEliece, D. J. C. MacKay, and J. Cheng, "Turbo decoding as an instance of Pearl's belief propagation algorithm," IEEE J. Sel. Areas Commun., vol. 16, pp. 140-152, Feb. 1998.
    • (1998) IEEE J. Sel. Areas Commun. , vol.16 , pp. 140-152
    • McEliece, R.J.1    MacKay, D.J.C.2    Cheng, J.3
  • 35
    • 85032780651 scopus 로고    scopus 로고
    • An introduction to factor graphs
    • Jan.
    • H.-A. Loeliger, "An introduction to factor graphs," IEEE Signal Process. Mag., vol. 21, pp. 28-41, Jan. 2004.
    • (2004) IEEE Signal Process. Mag. , vol.21 , pp. 28-41
    • Loeliger, H.-A.1
  • 37
    • 0003841602 scopus 로고
    • Why the logistic function? A tutorial discussion on probabilities and neural networks
    • Cambridge, MA, USA, Tech. Rep. 9503, Aug. 13
    • M. I. Jordan, "Why the logistic function? A tutorial discussion on probabilities and neural networks," MIT Comput. Congnit. Sci., Cambridge, MA, USA, Tech. Rep. 9503, Aug. 13, 1995.
    • (1995) MIT Comput. Congnit. Sci.
    • Jordan, M.I.1
  • 39
  • 41
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • H. Zou and T. Hastie, "Regularization and variable selection via the elastic net," J. Roy. Statist. Soc., B, vol. 67, no. 2, pp. 301-320, 2005.
    • (2005) J. Roy. Statist. Soc., B , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 42
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • A. K. Nigam, K. McCallum, S. Thrun, and T.Mitchell, "Text classification from labeled and unlabeled documents using EM," Mach. Learn., vol. 39, pp. 103-134, 2000.
    • (2000) Mach. Learn. , vol.39 , pp. 103-134
    • Nigam, A.K.1    McCallum, K.2    Thrun, S.3    Mitchell, T.4
  • 43
    • 84906489211 scopus 로고    scopus 로고
    • An empirical-Bayes approach to recovering linearly constrained non-negative sparse signals
    • Sep.
    • J. P. Vila and P. Schniter, "An empirical-Bayes approach to recovering linearly constrained non-negative sparse signals," IEEE Trans. Signal Process., vol. 62, pp. 4689-4703, Sep. 2014.
    • (2014) IEEE Trans. Signal Process. , vol.62 , pp. 4689-4703
    • Vila, J.P.1    Schniter, P.2
  • 44
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," J. Roy. Statist. Soc., B, vol. 39, pp. 1-38, 1977.
    • (1977) J. Roy. Statist. Soc., B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 46
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: A new benchmark collection for text categorization research
    • D. D. Lewis,Y.Yang, T.G. Rose, and F. Li, "RCV1: A new benchmark collection for text categorization research," J. Mach. Learn. Res., vol. 5, pp. 361-397, 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 361-397
    • Lewis, D.D.1    Yang, Y.2    Rose, T.G.3    Li, F.4
  • 48
    • 84856004485 scopus 로고    scopus 로고
    • Templates for convex cone problems with applications to sparse signal recovery
    • S. R. Becker, E. J. Candès, and M. C. Grant, "Templates for convex cone problems with applications to sparse signal recovery," Math. Prog. Comput., vol. 3, no. 3, pp. 165-218, 2011.
    • (2011) Math. Prog. Comput. , vol.3 , Issue.3 , pp. 165-218
    • Becker, S.R.1    Candès, E.J.2    Grant, M.C.3
  • 49
    • 0033436056 scopus 로고    scopus 로고
    • Newton's method for large-scale bound constrained problems
    • C. J. Lin and J. J. Moré, "Newton's method for large-scale bound constrained problems," SIAM J. Optim., vol. 9, pp. 1100-1127, 1999.
    • (1999) SIAM J. Optim. , vol.9 , pp. 1100-1127
    • Lin, C.J.1    Moré, J.J.2
  • 51
    • 0033481631 scopus 로고    scopus 로고
    • Mean and variance of truncated normal distributions
    • Nov.
    • D. R. Barr and E. T. Sherrill, "Mean and variance of truncated normal distributions," Amer. Statist., vol. 53, Nov. 1999.
    • (1999) Amer. Statist. , vol.53
    • Barr, D.R.1    Sherrill, E.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.