-
1
-
-
84894154978
-
An empirical-Bayes approach to recovering linearly constrained non-negative sparse signals
-
Dec.
-
J. Vila and P. Schniter, "An empirical-Bayes approach to recovering linearly constrained non-negative sparse signals," in Proc. IEEE Workshop Comp. Adv. Multi-Sensor Adapt. Process., Dec. 2013, pp. 5-8.
-
(2013)
Proc. IEEE Workshop Comp. Adv. Multi-Sensor Adapt. Process.
, pp. 5-8
-
-
Vila, J.1
Schniter, P.2
-
2
-
-
84861772901
-
Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches
-
J. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and J. Chanussot, "Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches," IEEE J. Sel. Topics Appl. Earth Observ., vol. 5, no. 2, pp. 354-379, 2012.
-
(2012)
IEEE J. Sel. Topics Appl. Earth Observ.
, vol.5
, Issue.2
, pp. 354-379
-
-
Bioucas-Dias, J.1
Plaza, A.2
Dobigeon, N.3
Parente, M.4
Du, Q.5
Gader, P.6
Chanussot, J.7
-
4
-
-
68149147540
-
Sparse and stable Markowitz portfolios
-
J. Brodie, I. Daubechies, C. DeMol, D. Giannone, and I. Loris, "Sparse and stable Markowitz portfolios," Proc. Nat. Acad. Sci., vol. 106, no. 30, pp. 12267-12272, 2009.
-
(2009)
Proc. Nat. Acad. Sci.
, vol.106
, Issue.30
, pp. 12267-12272
-
-
Brodie, J.1
Daubechies, I.2
Demol, C.3
Giannone, D.4
Loris, I.5
-
5
-
-
18744404849
-
Maximum likelihood set for estimating a probability mass function
-
DOI 10.1162/0899766053723078
-
B. M. Jedynak and S. Khudanpur, "Maximum likelihood set for estimating a probability mass function," Neural Comput., vol. 17, pp. 1508-1530, Jul. 2005. (Pubitemid 40669910)
-
(2005)
Neural Computation
, vol.17
, Issue.7
, pp. 1508-1530
-
-
Jedynak, B.M.1
Khudanpur, S.2
-
6
-
-
84897545057
-
Sparse projections onto the simplex
-
June
-
A. Kyrillidis, S. Becker, V. Cevher, and C. Koch, "Sparse projections onto the simplex," in Proc. Int. Conf. Mach. Learn., June 2013, pp. 235-243.
-
(2013)
Proc. Int. Conf. Mach. Learn.
, pp. 235-243
-
-
Kyrillidis, A.1
Becker, S.2
Cevher, V.3
Koch, C.4
-
7
-
-
22144488449
-
Sparse nonnegative solution of underdetermined linear equations by linear programming
-
DOI 10.1073/pnas.0502269102
-
D. L. Donoho and J. Tanner, "Sparse nonnegative solution of underdetermined linear equations by linear programming," Proc. Nat. Acad. Sci., vol. 102, no. 27, pp. 9446-9451, 2005. (Pubitemid 40981701)
-
(2005)
Proceedings of the National Academy of Sciences of the United States of America
, vol.102
, Issue.27
, pp. 9446-9451
-
-
Donoho, D.L.1
Tanner, J.2
-
8
-
-
55349132734
-
On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations
-
Nov.
-
A. M. Bruckstein, M. Elad, and M. Zibulevsky, "On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations," IEEE Trans. Inf. Theory, vol. 54, pp. 4813-4820, Nov. 2008.
-
(2008)
IEEE Trans. Inf. Theory
, vol.54
, pp. 4813-4820
-
-
Bruckstein, A.M.1
Elad, M.2
Zibulevsky, M.3
-
9
-
-
80051743731
-
Sparse recovery of nonnegative signals with minimal expansion
-
Jan.
-
M. A. Khajehnejad, A. Dimakis, W. Xu, and B. Hassibi, "Sparse recovery of nonnegative signals with minimal expansion," IEEE Trans. Signal Process., vol. 59, pp. 198-208, Jan. 2011.
-
(2011)
IEEE Trans. Signal Process.
, vol.59
, pp. 198-208
-
-
Khajehnejad, M.A.1
Dimakis, A.2
Xu, W.3
Hassibi, B.4
-
10
-
-
85032751389
-
Imaging via compressive sampling
-
Mar.
-
J. Romberg, "Imaging via compressive sampling," IEEE Signal Process. Mag., vol. 25, pp. 14-20, Mar. 2008.
-
(2008)
IEEE Signal Process. Mag.
, vol.25
, pp. 14-20
-
-
Romberg, J.1
-
11
-
-
84969715286
-
Nonnegativity constraints in numerical analysis
-
A. Bultheel and R. Cools, Eds. Singapore: World Scientific
-
D. Chen and R. J. Plemmons, "Nonnegativity constraints in numerical analysis," in The Birth of Numerical Analysis, A. Bultheel and R. Cools, Eds. Singapore: World Scientific, 2009, pp. 109-140.
-
(2009)
The Birth of Numerical Analysis
, pp. 109-140
-
-
Chen, D.1
Plemmons, R.J.2
-
13
-
-
79953103015
-
The projectured GSURE for automatic parameter tuning in iterative shrinkage methods
-
R.Giryes,M.Elad, andY. C. Eldar, "The projectured GSURE for automatic parameter tuning in iterative shrinkage methods," Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 407-422, 2011.
-
(2011)
Appl. Comput. Harmon. Anal.
, vol.30
, Issue.2
, pp. 407-422
-
-
Giryes, R.1
Elad, M.2
Eldar, Y.C.3
-
14
-
-
84892394231
-
Non-negative least squares for high-dimensional linear models: Consistency and sparse recovery without regularization
-
Dec.
-
M. Slawski and M. Hein, "Non-negative least squares for high-dimensional linear models: Consistency and sparse recovery without regularization," Electron. J. Statist., vol. 7, pp. 3004-3056, Dec. 2013.
-
(2013)
Electron. J. Statist.
, vol.7
, pp. 3004-3056
-
-
Slawski, M.1
Hein, M.2
-
15
-
-
71149117997
-
Gradient descent with sparsification: An iterative algorithm for sparse recovery with restricted isometry property
-
New York, NY, USA
-
R. Garg and R. Khandekar, "Gradient descent with sparsification: An iterative algorithm for sparse recovery with restricted isometry property," in Proc. Int. Conf. Mach. Learn., New York, NY, USA, 2009, pp. 337-344.
-
(2009)
Proc. Int. Conf. Mach. Learn.
, pp. 337-344
-
-
Garg, R.1
Khandekar, R.2
-
16
-
-
80054799706
-
Generalized approximate message passing for estimation with random linear mixing
-
St. Petersburg, Russia, Aug.
-
S. Rangan, "Generalized approximate message passing for estimation with random linear mixing," in Proc. IEEE Int. Symp. Inf. Theory, St. Petersburg, Russia, Aug. 2011, pp. 2168-2172.
-
(2011)
Proc. IEEE Int. Symp. Inf. Theory
, pp. 2168-2172
-
-
Rangan, S.1
-
17
-
-
84890407253
-
Fixed points of generalized approximate message passing with arbitrary matrices
-
Istanbul, Turkey, Jul.
-
S. Rangan, P. Schniter, E. Riegler, A. Fletcher, and V. Cevher, "Fixed points of generalized approximate message passing with arbitrary matrices," in Proc. IEEE Int. Symp. Inf. Theory, Istanbul, Turkey, Jul. 2013, pp. 664-668.
-
(2013)
Proc. IEEE Int. Symp. Inf. Theory
, pp. 664-668
-
-
Rangan, S.1
Schniter, P.2
Riegler, E.3
Fletcher, A.4
Cevher, V.5
-
18
-
-
84906541692
-
On the convergence of generalized approximate message passing with arbitrary matrices
-
Honolulu, HI, USA, Jul.
-
S.Rangan, P. Schniter, and A. Fletcher, "On the convergence of generalized approximate message passing with arbitrary matrices," in Proc. IEEE Int. Symp. Inf. Theory, Honolulu, HI, USA, Jul. 2014.
-
(2014)
Proc. IEEE Int. Symp. Inf. Theory
-
-
Rangan, S.1
Schniter, P.2
Fletcher, A.3
-
19
-
-
0002629270
-
Maximum-likelihood from incomplete data via the em algorithm
-
A. Dempster, N. M. Laird, and D. B. Rubin, "Maximum-likelihood from incomplete data via the EM algorithm," J. Roy. Statist. Soc., vol. 39, pp. 1-17, 1977.
-
(1977)
J. Roy. Statist. Soc.
, vol.39
, pp. 1-17
-
-
Dempster, A.1
Laird, N.M.2
Rubin, D.B.3
-
20
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
R. Tibshirani, "Regression shrinkage and selection via the lasso," J. Roy. Statist. Soc. B, vol. 58, no. 1, pp. 267-288, 1996.
-
(1996)
J. Roy. Statist. Soc. B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
21
-
-
0032131292
-
Atomic decomposition by basis pursuit
-
S. S. Chen,D. L.Donoho, andM.A. Saunders, "Atomic decomposition by basis pursuit," SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33-61, 1998.
-
(1998)
SIAM J. Sci. Comput.
, vol.20
, Issue.1
, pp. 33-61
-
-
Chen, S.S.1
-
22
-
-
84856004485
-
Templates for convex cone problems with applications to sparse signal recovery
-
S. Becker, E. Candès, and M. M. Grant, "Templates for convex cone problems with applications to sparse signal recovery," Math. Program. Comput., vol. 3, no. 3, pp. 165-218, 2011.
-
(2011)
Math. Program. Comput.
, vol.3
, Issue.3
, pp. 165-218
-
-
Becker, S.1
Candès, E.2
Grant, M.M.3
-
23
-
-
0003690415
-
-
Boston, MA, USA: Birkhäuser
-
P. Bloomfield and W. L. Steiger, Least Absolute Deviations: Theory, Applications, and Algorithms. Boston, MA, USA: Birkhäuser, 1984.
-
(1984)
Least Absolute Deviations: Theory, Applications, and Algorithms
-
-
Bloomfield, P.1
Steiger, W.L.2
-
24
-
-
84883317968
-
Expectation-maximization Gaussian-mixture approximate message passing
-
Oct.
-
J. P. Vila and P. Schniter, "Expectation-maximization Gaussian-mixture approximate message passing," IEEE Trans. Signal Process., vol. 61, pp. 4658-4672, Oct. 2013.
-
(2013)
IEEE Trans. Signal Process.
, vol.61
, pp. 4658-4672
-
-
Vila, J.P.1
Schniter, P.2
-
25
-
-
84969891693
-
State evolution for general approximate message passing algorithms, with applications to spatial coupling
-
A. Javanmard and A. Montanari, "State evolution for general approximate message passing algorithms, with applications to spatial coupling," Information and Inference, vol. 2, no. 2, pp. 115-144, 2013.
-
(2013)
Information and Inference
, vol.2
, Issue.2
, pp. 115-144
-
-
Javanmard, A.1
Montanari, A.2
-
26
-
-
84877769740
-
Approximate message passing with consistent parameter estimation and applications to sparse learning
-
Lake Tahoe, NV, USA, Dec.
-
U. S. Kamilov, S. Rangan, A. K. Fletcher, and M. Unser, "Approximate message passing with consistent parameter estimation and applications to sparse learning," in Proc. Neural Inf. Process. Syst. Conf., Lake Tahoe, NV, USA, Dec. 2012, pp. 2447-2455.
-
(2012)
Proc. Neural Inf. Process. Syst. Conf.
, pp. 2447-2455
-
-
Kamilov, U.S.1
Rangan, S.2
Fletcher, A.K.3
Unser, M.4
-
27
-
-
84929731128
-
-
New York, NY, USA: Cambridge Univ. Press
-
B. Efron, Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction. New York, NY, USA: Cambridge Univ. Press, 2010.
-
(2010)
Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction
-
-
Efron, B.1
-
28
-
-
73149095169
-
Message passing algorithms for compressed sensing
-
Nov.
-
D. L. Donoho, A. Maleki, and A. Montanari, "Message passing algorithms for compressed sensing," Proc. Nat. Acad. Sci., vol. 106, pp. 18914-18919, Nov. 2009.
-
(2009)
Proc. Nat. Acad. Sci.
, vol.106
, pp. 18914-18919
-
-
Donoho, D.L.1
Maleki, A.2
Montanari, A.3
-
29
-
-
77954825510
-
Message passing algorithms for compressed sensing: II. Analysis and validation
-
Cairo, Egypt, Jan.
-
D. L. Donoho, A. Maleki, and A. Montanari, "Message passing algorithms for compressed sensing: II. Analysis and validation," in Proc. Inf. Theory Workshop, Cairo, Egypt, Jan. 2010, pp. 1-5.
-
(2010)
Proc. Inf. Theory Workshop
, pp. 1-5
-
-
Donoho, D.L.1
Maleki, A.2
Montanari, A.3
-
30
-
-
0032022704
-
Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage
-
PII S1057714998017849
-
A. Chambolle, R. A. DeVore, N. Lee, and B. J. Lucier, "Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage," IEEE Trans. Image Process., vol. 7, pp. 319-335, Mar. 1998. (Pubitemid 128745350)
-
(1998)
IEEE Transactions on Image Processing
, vol.7
, Issue.3
, pp. 319-335
-
-
Chambolle, A.1
DeVore, R.A.2
Lee, N.-Y.3
Lucier, B.J.4
-
31
-
-
7044231546
-
An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
-
DOI 10.1002/cpa.20042
-
I. Daubechies, M. Defrise, and C. D. Mol, "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint," Commun. Pure Appl. Math., vol. 57, pp. 1413-1457, Nov. 2004. (Pubitemid 39427442)
-
(2004)
Communications on Pure and Applied Mathematics
, vol.57
, Issue.11
, pp. 1413-1457
-
-
Daubechies, I.1
Defrise, M.2
De Mol, C.3
-
32
-
-
77949685085
-
Optimally tuned iterative reconstruction algorithms for compressed sensing
-
Apr.
-
A. Maleki and D. L. Donoho, "Optimally tuned iterative reconstruction algorithms for compressed sensing," IEEE J. Sel. Topics Signal Process., vol. 4, pp. 330-341, Apr. 2010.
-
(2010)
IEEE J. Sel. Topics Signal Process.
, vol.4
, pp. 330-341
-
-
Maleki, A.1
Donoho, D.L.2
-
33
-
-
0002788893
-
A view of the em algorithm that justifies incremental, sparse, and other variants
-
M. I. Jordan, Ed. Cambridge, MA, USA: MIT Press
-
R. Neal and G. Hinton, "A view of the EM algorithm that justifies incremental, sparse, and other variants," in Learning in Graphical Models, M. I. Jordan, Ed. Cambridge, MA, USA:MIT Press, 1999, pp. 355-368.
-
(1999)
Learning in Graphical Models
, pp. 355-368
-
-
Neal, R.1
Hinton, G.2
-
34
-
-
85032762613
-
Model-order selection: A review of information criterion rules
-
Jul.
-
P. Stoica and Y. Selén, "Model-order selection: A review of information criterion rules," IEEE Signal Process. Mag., vol. 21, pp. 36-47, Jul. 2004.
-
(2004)
IEEE Signal Process. Mag.
, vol.21
, pp. 36-47
-
-
Stoica, P.1
Selén, Y.2
-
36
-
-
85015836343
-
-
[Online] Available
-
S. Rangan, J. T. Parker, P. Schniter, J. Ziniel, J. Vila, and M. Borgerding et al., GAMPmatlab [Online]. Available: https://sourceforge. net/projects/gampmatlab/
-
GAMPmatlab
-
-
Rangan, S.1
Parker, J.T.2
Schniter, P.3
Ziniel, J.4
Vila, J.5
Borgerding, M.6
-
37
-
-
65649137930
-
Probing the Pareto frontier for basis pursuit solutions
-
E. van den Berg andM. P. Friedlander, "Probing the Pareto frontier for basis pursuit solutions," SIAM J. Scientif. Comput., vol. 31, no. 2, pp. 890-912, 2008.
-
(2008)
SIAM J. Scientif. Comput.
, vol.31
, Issue.2
, pp. 890-912
-
-
Berg Den E.Van1
Friedlander, M.P.2
-
38
-
-
84924412832
-
Optimal versus naive diversification: How inefficient is the 1-n portfolio strategy?
-
May
-
V. DeMiguel, L. Garlappi, and R. Uppal, "Optimal versus naive diversification: How inefficient is the 1-n portfolio strategy?," Rev. Financ. Stud., vol. 22, pp. 1915-1953, May 2009.
-
(2009)
Rev. Financ. Stud.
, vol.22
, pp. 1915-1953
-
-
Demiguel, V.1
Garlappi, L.2
Uppal, R.3
-
39
-
-
16444373735
-
Vertex component analysis: A fast algorithm to unmix hyperspectral data
-
DOI 10.1109/TGRS.2005.844293
-
J. Nascimento and J. Bioucas Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, 2005. (Pubitemid 40476033)
-
(2005)
IEEE Transactions on Geoscience and Remote Sensing
, vol.43
, Issue.4
, pp. 898-910
-
-
Nascimento, J.M.P.1
Dias, J.M.B.2
-
40
-
-
84881192795
-
The SHARE 2012 data collection campaign
-
no. 87430F
-
A. Giannandrea, N. Raqueno, D. W. Messinger, J. Faulring, J. P. Kerekes, J. van Aardt, K. Canham, S. Hagstrom, E. Ontiveros, A. Gerace, J. Kaufman, K. M. Vongsy, H. Griffith, B. D. Bartlett, E. Ientilucci, J.Meola, L. Scarff, and B. Daniels, "The SHARE 2012 data collection campaign," in Proc. SPIE, 2013, vol. 8743, no. 87430F, p. 15.
-
Proc. SPIE, 2013
, vol.8743
, pp. 15
-
-
Giannandrea, A.1
Raqueno, N.2
Messinger, D.W.3
Faulring, J.4
Kerekes, J.P.5
-
41
-
-
84881121990
-
SHARE 2012: Large edge targets for hyperspectral imaging applications
-
87430G
-
K. Canham, D. Goldberg, J. Kerekes, N. Raqueno, and D. Messinger, "SHARE 2012: Large edge targets for hyperspectral imaging applications," in Proc. SPIE, 2013, vol. 8743, no. 87430G, p. 9.
-
Proc. SPIE, 2013
, vol.8743
, pp. 9
-
-
Canham, K.1
Goldberg, D.2
Kerekes, J.3
Raqueno, N.4
Messinger, D.5
-
42
-
-
0035273728
-
Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
-
DOI 10.1109/36.911111, PII S0196289201020861
-
D. Heinz and C.-I. Chang, "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, 2001. (Pubitemid 32400422)
-
(2001)
IEEE Transactions on Geoscience and Remote Sensing
, vol.39
, Issue.3
, pp. 529-545
-
-
Heinz, D.C.1
Chang, C.-I.2
-
43
-
-
0003446320
-
-
New York, NY, USA: Wiley
-
N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions. New York, NY, USA: Wiley, 1995, vol. 2.
-
(1995)
Continuous Univariate Distributions
, vol.2
-
-
Johnson, N.L.1
Kotz, S.2
Balakrishnan, N.3
|