메뉴 건너뛰기




Volumn 62, Issue 18, 2014, Pages 4689-4703

An empirical-bayes approach to recovering linearly constrained non-negative sparse signals

Author keywords

Belief propagation; compressed sensing; estimation; expectation maximization algorithms

Indexed keywords

COMPRESSED SENSING; ESTIMATION; FINANCIAL DATA PROCESSING; MAXIMUM PRINCIPLE; NUMERICAL METHODS; SPECTROSCOPY;

EID: 84906489211     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSP.2014.2337841     Document Type: Article
Times cited : (37)

References (43)
  • 1
    • 84894154978 scopus 로고    scopus 로고
    • An empirical-Bayes approach to recovering linearly constrained non-negative sparse signals
    • Dec.
    • J. Vila and P. Schniter, "An empirical-Bayes approach to recovering linearly constrained non-negative sparse signals," in Proc. IEEE Workshop Comp. Adv. Multi-Sensor Adapt. Process., Dec. 2013, pp. 5-8.
    • (2013) Proc. IEEE Workshop Comp. Adv. Multi-Sensor Adapt. Process. , pp. 5-8
    • Vila, J.1    Schniter, P.2
  • 5
    • 18744404849 scopus 로고    scopus 로고
    • Maximum likelihood set for estimating a probability mass function
    • DOI 10.1162/0899766053723078
    • B. M. Jedynak and S. Khudanpur, "Maximum likelihood set for estimating a probability mass function," Neural Comput., vol. 17, pp. 1508-1530, Jul. 2005. (Pubitemid 40669910)
    • (2005) Neural Computation , vol.17 , Issue.7 , pp. 1508-1530
    • Jedynak, B.M.1    Khudanpur, S.2
  • 8
    • 55349132734 scopus 로고    scopus 로고
    • On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations
    • Nov.
    • A. M. Bruckstein, M. Elad, and M. Zibulevsky, "On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations," IEEE Trans. Inf. Theory, vol. 54, pp. 4813-4820, Nov. 2008.
    • (2008) IEEE Trans. Inf. Theory , vol.54 , pp. 4813-4820
    • Bruckstein, A.M.1    Elad, M.2    Zibulevsky, M.3
  • 9
    • 80051743731 scopus 로고    scopus 로고
    • Sparse recovery of nonnegative signals with minimal expansion
    • Jan.
    • M. A. Khajehnejad, A. Dimakis, W. Xu, and B. Hassibi, "Sparse recovery of nonnegative signals with minimal expansion," IEEE Trans. Signal Process., vol. 59, pp. 198-208, Jan. 2011.
    • (2011) IEEE Trans. Signal Process. , vol.59 , pp. 198-208
    • Khajehnejad, M.A.1    Dimakis, A.2    Xu, W.3    Hassibi, B.4
  • 10
    • 85032751389 scopus 로고    scopus 로고
    • Imaging via compressive sampling
    • Mar.
    • J. Romberg, "Imaging via compressive sampling," IEEE Signal Process. Mag., vol. 25, pp. 14-20, Mar. 2008.
    • (2008) IEEE Signal Process. Mag. , vol.25 , pp. 14-20
    • Romberg, J.1
  • 11
    • 84969715286 scopus 로고    scopus 로고
    • Nonnegativity constraints in numerical analysis
    • A. Bultheel and R. Cools, Eds. Singapore: World Scientific
    • D. Chen and R. J. Plemmons, "Nonnegativity constraints in numerical analysis," in The Birth of Numerical Analysis, A. Bultheel and R. Cools, Eds. Singapore: World Scientific, 2009, pp. 109-140.
    • (2009) The Birth of Numerical Analysis , pp. 109-140
    • Chen, D.1    Plemmons, R.J.2
  • 13
    • 79953103015 scopus 로고    scopus 로고
    • The projectured GSURE for automatic parameter tuning in iterative shrinkage methods
    • R.Giryes,M.Elad, andY. C. Eldar, "The projectured GSURE for automatic parameter tuning in iterative shrinkage methods," Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 407-422, 2011.
    • (2011) Appl. Comput. Harmon. Anal. , vol.30 , Issue.2 , pp. 407-422
    • Giryes, R.1    Elad, M.2    Eldar, Y.C.3
  • 14
    • 84892394231 scopus 로고    scopus 로고
    • Non-negative least squares for high-dimensional linear models: Consistency and sparse recovery without regularization
    • Dec.
    • M. Slawski and M. Hein, "Non-negative least squares for high-dimensional linear models: Consistency and sparse recovery without regularization," Electron. J. Statist., vol. 7, pp. 3004-3056, Dec. 2013.
    • (2013) Electron. J. Statist. , vol.7 , pp. 3004-3056
    • Slawski, M.1    Hein, M.2
  • 15
    • 71149117997 scopus 로고    scopus 로고
    • Gradient descent with sparsification: An iterative algorithm for sparse recovery with restricted isometry property
    • New York, NY, USA
    • R. Garg and R. Khandekar, "Gradient descent with sparsification: An iterative algorithm for sparse recovery with restricted isometry property," in Proc. Int. Conf. Mach. Learn., New York, NY, USA, 2009, pp. 337-344.
    • (2009) Proc. Int. Conf. Mach. Learn. , pp. 337-344
    • Garg, R.1    Khandekar, R.2
  • 16
    • 80054799706 scopus 로고    scopus 로고
    • Generalized approximate message passing for estimation with random linear mixing
    • St. Petersburg, Russia, Aug.
    • S. Rangan, "Generalized approximate message passing for estimation with random linear mixing," in Proc. IEEE Int. Symp. Inf. Theory, St. Petersburg, Russia, Aug. 2011, pp. 2168-2172.
    • (2011) Proc. IEEE Int. Symp. Inf. Theory , pp. 2168-2172
    • Rangan, S.1
  • 17
    • 84890407253 scopus 로고    scopus 로고
    • Fixed points of generalized approximate message passing with arbitrary matrices
    • Istanbul, Turkey, Jul.
    • S. Rangan, P. Schniter, E. Riegler, A. Fletcher, and V. Cevher, "Fixed points of generalized approximate message passing with arbitrary matrices," in Proc. IEEE Int. Symp. Inf. Theory, Istanbul, Turkey, Jul. 2013, pp. 664-668.
    • (2013) Proc. IEEE Int. Symp. Inf. Theory , pp. 664-668
    • Rangan, S.1    Schniter, P.2    Riegler, E.3    Fletcher, A.4    Cevher, V.5
  • 18
    • 84906541692 scopus 로고    scopus 로고
    • On the convergence of generalized approximate message passing with arbitrary matrices
    • Honolulu, HI, USA, Jul.
    • S.Rangan, P. Schniter, and A. Fletcher, "On the convergence of generalized approximate message passing with arbitrary matrices," in Proc. IEEE Int. Symp. Inf. Theory, Honolulu, HI, USA, Jul. 2014.
    • (2014) Proc. IEEE Int. Symp. Inf. Theory
    • Rangan, S.1    Schniter, P.2    Fletcher, A.3
  • 19
    • 0002629270 scopus 로고
    • Maximum-likelihood from incomplete data via the em algorithm
    • A. Dempster, N. M. Laird, and D. B. Rubin, "Maximum-likelihood from incomplete data via the EM algorithm," J. Roy. Statist. Soc., vol. 39, pp. 1-17, 1977.
    • (1977) J. Roy. Statist. Soc. , vol.39 , pp. 1-17
    • Dempster, A.1    Laird, N.M.2    Rubin, D.B.3
  • 20
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, "Regression shrinkage and selection via the lasso," J. Roy. Statist. Soc. B, vol. 58, no. 1, pp. 267-288, 1996.
    • (1996) J. Roy. Statist. Soc. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 21
    • 0032131292 scopus 로고    scopus 로고
    • Atomic decomposition by basis pursuit
    • S. S. Chen,D. L.Donoho, andM.A. Saunders, "Atomic decomposition by basis pursuit," SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33-61, 1998.
    • (1998) SIAM J. Sci. Comput. , vol.20 , Issue.1 , pp. 33-61
    • Chen, S.S.1
  • 22
    • 84856004485 scopus 로고    scopus 로고
    • Templates for convex cone problems with applications to sparse signal recovery
    • S. Becker, E. Candès, and M. M. Grant, "Templates for convex cone problems with applications to sparse signal recovery," Math. Program. Comput., vol. 3, no. 3, pp. 165-218, 2011.
    • (2011) Math. Program. Comput. , vol.3 , Issue.3 , pp. 165-218
    • Becker, S.1    Candès, E.2    Grant, M.M.3
  • 24
    • 84883317968 scopus 로고    scopus 로고
    • Expectation-maximization Gaussian-mixture approximate message passing
    • Oct.
    • J. P. Vila and P. Schniter, "Expectation-maximization Gaussian-mixture approximate message passing," IEEE Trans. Signal Process., vol. 61, pp. 4658-4672, Oct. 2013.
    • (2013) IEEE Trans. Signal Process. , vol.61 , pp. 4658-4672
    • Vila, J.P.1    Schniter, P.2
  • 25
    • 84969891693 scopus 로고    scopus 로고
    • State evolution for general approximate message passing algorithms, with applications to spatial coupling
    • A. Javanmard and A. Montanari, "State evolution for general approximate message passing algorithms, with applications to spatial coupling," Information and Inference, vol. 2, no. 2, pp. 115-144, 2013.
    • (2013) Information and Inference , vol.2 , Issue.2 , pp. 115-144
    • Javanmard, A.1    Montanari, A.2
  • 26
    • 84877769740 scopus 로고    scopus 로고
    • Approximate message passing with consistent parameter estimation and applications to sparse learning
    • Lake Tahoe, NV, USA, Dec.
    • U. S. Kamilov, S. Rangan, A. K. Fletcher, and M. Unser, "Approximate message passing with consistent parameter estimation and applications to sparse learning," in Proc. Neural Inf. Process. Syst. Conf., Lake Tahoe, NV, USA, Dec. 2012, pp. 2447-2455.
    • (2012) Proc. Neural Inf. Process. Syst. Conf. , pp. 2447-2455
    • Kamilov, U.S.1    Rangan, S.2    Fletcher, A.K.3    Unser, M.4
  • 28
    • 73149095169 scopus 로고    scopus 로고
    • Message passing algorithms for compressed sensing
    • Nov.
    • D. L. Donoho, A. Maleki, and A. Montanari, "Message passing algorithms for compressed sensing," Proc. Nat. Acad. Sci., vol. 106, pp. 18914-18919, Nov. 2009.
    • (2009) Proc. Nat. Acad. Sci. , vol.106 , pp. 18914-18919
    • Donoho, D.L.1    Maleki, A.2    Montanari, A.3
  • 29
    • 77954825510 scopus 로고    scopus 로고
    • Message passing algorithms for compressed sensing: II. Analysis and validation
    • Cairo, Egypt, Jan.
    • D. L. Donoho, A. Maleki, and A. Montanari, "Message passing algorithms for compressed sensing: II. Analysis and validation," in Proc. Inf. Theory Workshop, Cairo, Egypt, Jan. 2010, pp. 1-5.
    • (2010) Proc. Inf. Theory Workshop , pp. 1-5
    • Donoho, D.L.1    Maleki, A.2    Montanari, A.3
  • 30
    • 0032022704 scopus 로고    scopus 로고
    • Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage
    • PII S1057714998017849
    • A. Chambolle, R. A. DeVore, N. Lee, and B. J. Lucier, "Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage," IEEE Trans. Image Process., vol. 7, pp. 319-335, Mar. 1998. (Pubitemid 128745350)
    • (1998) IEEE Transactions on Image Processing , vol.7 , Issue.3 , pp. 319-335
    • Chambolle, A.1    DeVore, R.A.2    Lee, N.-Y.3    Lucier, B.J.4
  • 31
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • DOI 10.1002/cpa.20042
    • I. Daubechies, M. Defrise, and C. D. Mol, "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint," Commun. Pure Appl. Math., vol. 57, pp. 1413-1457, Nov. 2004. (Pubitemid 39427442)
    • (2004) Communications on Pure and Applied Mathematics , vol.57 , Issue.11 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    De Mol, C.3
  • 32
    • 77949685085 scopus 로고    scopus 로고
    • Optimally tuned iterative reconstruction algorithms for compressed sensing
    • Apr.
    • A. Maleki and D. L. Donoho, "Optimally tuned iterative reconstruction algorithms for compressed sensing," IEEE J. Sel. Topics Signal Process., vol. 4, pp. 330-341, Apr. 2010.
    • (2010) IEEE J. Sel. Topics Signal Process. , vol.4 , pp. 330-341
    • Maleki, A.1    Donoho, D.L.2
  • 33
    • 0002788893 scopus 로고    scopus 로고
    • A view of the em algorithm that justifies incremental, sparse, and other variants
    • M. I. Jordan, Ed. Cambridge, MA, USA: MIT Press
    • R. Neal and G. Hinton, "A view of the EM algorithm that justifies incremental, sparse, and other variants," in Learning in Graphical Models, M. I. Jordan, Ed. Cambridge, MA, USA:MIT Press, 1999, pp. 355-368.
    • (1999) Learning in Graphical Models , pp. 355-368
    • Neal, R.1    Hinton, G.2
  • 34
    • 85032762613 scopus 로고    scopus 로고
    • Model-order selection: A review of information criterion rules
    • Jul.
    • P. Stoica and Y. Selén, "Model-order selection: A review of information criterion rules," IEEE Signal Process. Mag., vol. 21, pp. 36-47, Jul. 2004.
    • (2004) IEEE Signal Process. Mag. , vol.21 , pp. 36-47
    • Stoica, P.1    Selén, Y.2
  • 37
    • 65649137930 scopus 로고    scopus 로고
    • Probing the Pareto frontier for basis pursuit solutions
    • E. van den Berg andM. P. Friedlander, "Probing the Pareto frontier for basis pursuit solutions," SIAM J. Scientif. Comput., vol. 31, no. 2, pp. 890-912, 2008.
    • (2008) SIAM J. Scientif. Comput. , vol.31 , Issue.2 , pp. 890-912
    • Berg Den E.Van1    Friedlander, M.P.2
  • 38
    • 84924412832 scopus 로고    scopus 로고
    • Optimal versus naive diversification: How inefficient is the 1-n portfolio strategy?
    • May
    • V. DeMiguel, L. Garlappi, and R. Uppal, "Optimal versus naive diversification: How inefficient is the 1-n portfolio strategy?," Rev. Financ. Stud., vol. 22, pp. 1915-1953, May 2009.
    • (2009) Rev. Financ. Stud. , vol.22 , pp. 1915-1953
    • Demiguel, V.1    Garlappi, L.2    Uppal, R.3
  • 39
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J. Nascimento and J. Bioucas Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, 2005. (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 40
    • 84881192795 scopus 로고    scopus 로고
    • The SHARE 2012 data collection campaign
    • no. 87430F
    • A. Giannandrea, N. Raqueno, D. W. Messinger, J. Faulring, J. P. Kerekes, J. van Aardt, K. Canham, S. Hagstrom, E. Ontiveros, A. Gerace, J. Kaufman, K. M. Vongsy, H. Griffith, B. D. Bartlett, E. Ientilucci, J.Meola, L. Scarff, and B. Daniels, "The SHARE 2012 data collection campaign," in Proc. SPIE, 2013, vol. 8743, no. 87430F, p. 15.
    • Proc. SPIE, 2013 , vol.8743 , pp. 15
    • Giannandrea, A.1    Raqueno, N.2    Messinger, D.W.3    Faulring, J.4    Kerekes, J.P.5
  • 41
    • 84881121990 scopus 로고    scopus 로고
    • SHARE 2012: Large edge targets for hyperspectral imaging applications
    • 87430G
    • K. Canham, D. Goldberg, J. Kerekes, N. Raqueno, and D. Messinger, "SHARE 2012: Large edge targets for hyperspectral imaging applications," in Proc. SPIE, 2013, vol. 8743, no. 87430G, p. 9.
    • Proc. SPIE, 2013 , vol.8743 , pp. 9
    • Canham, K.1    Goldberg, D.2    Kerekes, J.3    Raqueno, N.4    Messinger, D.5
  • 42
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • DOI 10.1109/36.911111, PII S0196289201020861
    • D. Heinz and C.-I. Chang, "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, 2001. (Pubitemid 32400422)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.