-
1
-
-
84883371038
-
An empirical-Bayes approach to compressive sensing via approximate message passing
-
Durham, NC, USA, Jul.
-
J. P. Vila and P. Schniter, "An empirical-Bayes approach to compressive sensing via approximate message passing, " presented at the Duke Workshop Sens. Analy. High-Dimensional Data, Durham, NC, USA, Jul. 2011.
-
(2011)
Presented at the Duke Workshop Sens. Analy. High-Dimensional Data
-
-
Vila, J.P.1
Schniter, P.2
-
2
-
-
84861322335
-
Expectation-maximization Bernoulli- Gaussian approximate message passing
-
Pacific Grove, CA, USA, Nov.
-
J. P. Vila and P. Schniter, "Expectation-maximization Bernoulli- Gaussian approximate message passing, " in Proc. Asilomar Conf. Signals Syst. Comput., Pacific Grove, CA, USA, Nov. 2011, pp. 799-803.
-
(2011)
Proc. Asilomar Conf. Signals Syst. Comput.
, pp. 799-803
-
-
Vila, J.P.1
Schniter, P.2
-
3
-
-
84868564170
-
Expectation-maximization Gaussian-mixture approximate message passing
-
Princeton, NJ, USA, Mar.
-
J. P. Vila and P. Schniter, "Expectation-maximization Gaussian-mixture approximate message passing, " in Proc. Conf. Inf. Sci. Syst., Princeton, NJ, USA, Mar. 2012, pp. 1-6.
-
(2012)
Proc. Conf. Inf. Sci. Syst.
, pp. 1-6
-
-
Vila, J.P.1
Schniter, P.2
-
5
-
-
84867553573
-
Universality in polytope phase transitions and iterative algorithms
-
Boston, MA, USA, Jun.
-
M. Bayati, M. Lelarge, and A. Montanari, "Universality in polytope phase transitions and iterative algorithms, " in Proc. IEEE Int. Symp. Inf. Theory, Boston, MA, USA, Jun. 2012, pp. 1-5.
-
(2012)
Proc. IEEE Int. Symp. Inf. Theory
, pp. 1-5
-
-
Bayati, M.1
Lelarge, M.2
Montanari, A.3
-
6
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
R. Tibshirani, "Regression shrinkage and selection via the lasso, " J. Roy. Statist. Soc. B, vol. 58, no. 1, pp. 267-288, 1996.
-
(1996)
J. Roy. Statist. Soc. B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
7
-
-
0032131292
-
Atomic decomposition by basis pursuit
-
S. S. Chen, D. L. Donoho, andM.A. Saunders, "Atomic decomposition by basis pursuit, " SIAM J. Scientif. Comput., vol. 20, no. 1, pp. 33-61, 1998.
-
(1998)
SIAM J. Scientif. Comput.
, vol.20
, Issue.1
, pp. 33-61
-
-
Chen, S.S.1
Donoho, D.L.2
Saunders, M.A.3
-
8
-
-
73149095252
-
Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing
-
D. L. Donoho and J. Tanner, "Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing, " Philos. Trans. Roy. Soc. A, vol. 367, no. 1906, pp. 4273-4293, 2009.
-
(2009)
Philos. Trans. Roy. Soc. A
, vol.367
, Issue.1906
, pp. 4273-4293
-
-
Donoho, D.L.1
Tanner, J.2
-
9
-
-
80053933128
-
The noise-sensitivity phase transition in compressed sensing
-
Oct.
-
D. L. Donoho, A. Maleki, and A. Montanari, "The noise-sensitivity phase transition in compressed sensing, " IEEE Trans. Inf. Theory, vol. 57, no. 10, pp. 6920-6941, Oct. 2011.
-
(2011)
IEEE Trans. Inf. Theory
, vol.57
, Issue.10
, pp. 6920-6941
-
-
Donoho, D.L.1
Maleki, A.2
Montanari, A.3
-
10
-
-
73149095169
-
Message passing algorithms for compressed sensing
-
Nov.
-
D. L. Donoho, A. Maleki, and A. Montanari, "Message passing algorithms for compressed sensing, " in Proc. Natl. Acad. Sci., Nov. 2009, vol. 106, pp. 18914-18919.
-
(2009)
Proc. Natl. Acad. Sci.
, vol.106
, pp. 18914-18919
-
-
Donoho, D.L.1
Maleki, A.2
Montanari, A.3
-
11
-
-
84866494005
-
Optimal phase transitions in compressed sensing
-
Oct.
-
Y. Wu and S. Verdú, "Optimal phase transitions in compressed sensing, " IEEE Trans. Inf. Theory, vol. 58, pp. 6241-6263, Oct. 2012.
-
(2012)
IEEE Trans. Inf. Theory
, vol.58
, pp. 6241-6263
-
-
Wu, Y.1
Verdú, S.2
-
12
-
-
77954825041
-
Message passing algorithms for compressed sensing: I. Motivation and construction
-
Cairo, Egypt, Jan.
-
D. L. Donoho, A. Maleki, and A. Montanari, "Message passing algorithms for compressed sensing: I. Motivation and construction, " in Proc. Inf. Theory Workshop, Cairo, Egypt, Jan. 2010, pp. 1-5.
-
(2010)
Proc. Inf. Theory Workshop
, pp. 1-5
-
-
Donoho, D.L.1
Maleki, A.2
Montanari, A.3
-
13
-
-
79251496987
-
The dynamics of message passing on dense graphs, with applications to compressed sensing
-
Feb.
-
M. Bayati and A. Montanari, "The dynamics of message passing on dense graphs, with applications to compressed sensing, " IEEE Trans. Inf. Theory, vol. 57, pp. 764-785, Feb. 2011.
-
(2011)
IEEE Trans. Inf. Theory
, vol.57
, pp. 764-785
-
-
Bayati, M.1
Montanari, A.2
-
14
-
-
80054799706
-
Generalized approximate message passing for estimation with random linear mixing
-
Saint Petersburg, Russia, Aug.
-
S. Rangan, "Generalized approximate message passing for estimation with random linear mixing, " in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Saint Petersburg, Russia, Aug. 2011, pp. 2168-2172.
-
(2011)
Proc. IEEE Int. Symp. Inf. Theory (ISIT)
, pp. 2168-2172
-
-
Rangan, S.1
-
15
-
-
0002629270
-
Maximum-likelihood from incomplete data via the em algorithm
-
A. Dempster, N. M. Laird, and D. B. Rubin, "Maximum-likelihood from incomplete data via the EM algorithm, " J. Roy. Statist. Soc., vol. 39, pp. 1-17, 1977.
-
(1977)
J. Roy. Statist. Soc.
, vol.39
, pp. 1-17
-
-
Dempster, A.1
Laird, N.M.2
Rubin, D.B.3
-
16
-
-
79955484872
-
-
Testing, and Prediction. New York, NY, USA: Cambridge Univ. Press
-
B. Efron, Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction. New York, NY, USA: Cambridge Univ. Press, 2010.
-
(2010)
Large-Scale Inference: Empirical Bayes Methods for Estimation
-
-
Efron, B.1
-
17
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
M. E. Tipping, "Sparse Bayesian learning and the relevance vector machine, " J. Mach. Learn. Res., vol. 1, pp. 211-244, 2001.
-
(2001)
J. Mach. Learn. Res.
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
18
-
-
3543103176
-
Sparse Bayesian learning for basis selection
-
Aug.
-
D. P. Wipf and B. D. Rao, "Sparse Bayesian learning for basis selection, " IEEE Trans. Signal Process., vol. 52, pp. 2153-2164, Aug. 2004.
-
(2004)
IEEE Trans. Signal Process.
, vol.52
, pp. 2153-2164
-
-
Wipf, D.P.1
Rao, B.D.2
-
19
-
-
44849087307
-
Bayesian compressive sensing
-
Jun.
-
S. Ji, Y. Xue, and L. Carin, "Bayesian compressive sensing, " IEEE Trans. Signal Process., vol. 56, pp. 2346-2356, Jun. 2008.
-
(2008)
IEEE Trans. Signal Process.
, vol.56
, pp. 2346-2356
-
-
Ji, S.1
Xue, Y.2
Carin, L.3
-
20
-
-
84877769740
-
Approximate message passing with consistent parameter estimation and applications to sparse learning
-
Lake Tahoe, NV, USA, Dec.
-
U. S.Kamilov, S.Rangan, A. K. Fletcher, andM. Unser, "Approximate message passing with consistent parameter estimation and applications to sparse learning, " in Proc. Neural Inf. Process. Syst. Conf. (NIPS), Lake Tahoe, NV, USA, Dec. 2012, pp. 2447-2455.
-
(2012)
Proc. Neural Inf. Process. Syst. Conf. (NIPS)
, pp. 2447-2455
-
-
Kamilov, U.1
Rangan, S.2
Fletcher, A.K.3
Unser, M.4
-
21
-
-
84864610333
-
One-bit measurements with adaptive thresholds
-
Oct.
-
U. S. Kamilov, A. Bourquard, A.Amini, and M. Unser, "One-bit measurements with adaptive thresholds, " IEEE Signal Process. Lett., vol. 19, pp. 607-610, Oct. 2012.
-
(2012)
IEEE Signal Process. Lett.
, vol.19
, pp. 607-610
-
-
Kamilov, U.S.1
Bourquard, A.2
Amini, A.3
Unser, M.4
-
22
-
-
0002210265
-
On the convergence properties of the em algorithm
-
C. F. J. Wu, "On the convergence properties of the EM algorithm, " Ann. Statist., vol. 11, no. 1, pp. 95-103, 1983.
-
(1983)
Ann. Statist.
, vol.11
, Issue.1
, pp. 95-103
-
-
Wu, C.F.J.1
-
23
-
-
0002788893
-
A view of the em algorithm that justifies incremental, sparse, and other variants
-
MA, USA: MIT Press
-
R. Neal and G. Hinton, , M. I. Jordan, Ed., "A view of the EM algorithm that justifies incremental, sparse, and other variants, " in Learning in Graphical Models. Cambridge, MA, USA: MIT Press, 1999, pp. 355-368.
-
(1999)
Learning in Graphical Models. Cambridge
, pp. 355-368
-
-
Neal, R.1
Hinton, G.2
Jordan, M.I.3
-
25
-
-
85032762613
-
Model-order selection: A review of information criterion rules
-
Jul.
-
P. Stoica and Y. Selén, "Model-order selection: A review of information criterion rules, " IEEE Signal Process. Mag., vol. 21, pp. 36-47, Jul. 2004.
-
(2004)
IEEE Signal Process. Mag.
, vol.21
, pp. 36-47
-
-
Stoica, P.1
Selén, Y.2
-
26
-
-
85014561619
-
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
-
A. Beck and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems, " SIAM J. Imag. Sci., vol. 2, no. 1, pp. 183-202, 2009.
-
(2009)
SIAM J. Imag. Sci.
, vol.2
, Issue.1
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
27
-
-
84872876101
-
Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices
-
Jan.
-
H. Monajemi, S. Jafarpour, M. Gavish, and D. L. Donoho, "Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices, " in Proc. Natl. Acad. Sci., Jan. 2013, vol. 110, pp. 1181-1186, Stat 330/CME 362 Collaboration.
-
(2013)
Proc. Natl. Acad. Sci.
, vol.110
, pp. 1181-1186
-
-
Monajemi, H.1
Jafarpour, S.2
Gavish, M.3
Donoho, D.L.4
-
29
-
-
0027814133
-
Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition
-
Pacific Grove, CA, USA
-
Y. C. Pati, R. Rezaiifar, and P. S.Krishnaprasad, "Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition, " in Proc. Asilomar Conf. Signals Syst. Comput., Pacific Grove, CA, USA, 1993, pp. 40-44.
-
(1993)
Proc. Asilomar Conf. Signals Syst. Comput.
, pp. 40-44
-
-
Pati, Y.C.1
Rezaiifar, R.2
Krishnaprasad, P.3
-
30
-
-
65749110333
-
Subspace pursuit for compressive sensing reconstruction
-
Mar.
-
W. Dai and O. Milenkovic, "Subspace pursuit for compressive sensing reconstruction, " IEEE Trans. Inf. Theory, vol. 55, pp. 2230-2249, Mar. 2009.
-
(2009)
IEEE Trans. Inf. Theory
, vol.55
, pp. 2230-2249
-
-
Dai, W.1
Milenkovic, O.2
-
31
-
-
80051711912
-
Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning
-
Sep.
-
Z. Zhang and B. D. Rao, "Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning, " IEEE J. Sel. Topics Signal Process, vol. 5, pp. 912-926, Sep. 2011.
-
(2011)
IEEE J. Sel. Topics Signal Process
, vol.5
, pp. 912-926
-
-
Zhang, Z.1
Rao, B.D.2
-
32
-
-
65649137930
-
Probing the Pareto frontier for basis pursuit solutions
-
E. van den Berg andM. P. Friedlander, "Probing the Pareto frontier for basis pursuit solutions, " SIAM J. Scientif. Comput., vol. 31, no. 2, pp. 890-912, 2008.
-
(2008)
SIAM J. Scientif. Comput.
, vol.31
, Issue.2
, pp. 890-912
-
-
Van Den Berg, E.1
Friedlander, M.P.2
-
33
-
-
58649115827
-
A fast approach for overcomplete sparse decomposition based on smoothed norm
-
Jan.
-
H. Mohimani, M. Babaie-Zadeh, and C. Jutten, "A fast approach for overcomplete sparse decomposition based on smoothed norm, " IEEE Trans. Signal Process., vol. 57, pp. 289-301, Jan. 2009.
-
(2009)
IEEE Trans. Signal Process.
, vol.57
, pp. 289-301
-
-
Mohimani, H.1
Babaie-Zadeh, M.2
Jutten, C.3
-
34
-
-
84883340820
-
-
Univ. of California, San Diego, CA, USA, Tech. Rep., Nov.
-
Z. Zhang, "Master the usage of T-MSBL in 3 minutes, " Univ. of California, San Diego, CA, USA, Tech. Rep., Nov. 2011.
-
(2011)
Master the Usage of T-MSBL in 3 Minutes
-
-
Zhang, Z.1
-
35
-
-
77955672486
-
Learning with compressible priors
-
Vancouver, BC, Canada, Dec.
-
V. Cevher, "Learning with compressible priors, " in Proc. Neural Inf. Process. Syst. Conf., Vancouver, BC, Canada, Dec. 2009, pp. 261-269.
-
(2009)
Proc. Neural Inf. Process. Syst. Conf.
, pp. 261-269
-
-
Cevher, V.1
-
36
-
-
84868222706
-
A generalized framework for learning and recovery of structured sparse signals
-
Ann Arbor, MI, USA, Aug.
-
J. Ziniel, S. Rangan, and P. Schniter, "A generalized framework for learning and recovery of structured sparse signals, " in Proc. IEEE Workshop Statist. Signal Process., Ann Arbor, MI, USA, Aug. 2012, pp. 325-328.
-
(2012)
Proc. IEEE Workshop Statist. Signal Process.
, pp. 325-328
-
-
Ziniel, J.1
Rangan, S.2
Schniter, P.3
-
37
-
-
84883436896
-
-
Compressive Sensing Resources: References and Software
-
Compressive Sensing Resources: References and Software [Online]. Available: http://dsp.rice.edu/cs
-
-
-
|