메뉴 건너뛰기




Volumn 61, Issue 19, 2013, Pages 4658-4672

Expectation-Maximization gaussian-mixture approximate message passing

Author keywords

belief propagation; Compressed sensing; expectation maximization algorithms; Gaussian mixture model

Indexed keywords

BELIEF PROPAGATION; COMPUTATIONALLY EFFICIENT; EXPECTATION - MAXIMIZATIONS; EXPECTATION MAXIMIZATION; EXPECTATION-MAXIMIZATION ALGORITHMS; GAUSSIAN MIXTURE MODEL; NUMERICAL EXPERIMENTS; STATE-OF-THE-ART PERFORMANCE;

EID: 84883317968     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSP.2013.2272287     Document Type: Article
Times cited : (473)

References (37)
  • 2
    • 84861322335 scopus 로고    scopus 로고
    • Expectation-maximization Bernoulli- Gaussian approximate message passing
    • Pacific Grove, CA, USA, Nov.
    • J. P. Vila and P. Schniter, "Expectation-maximization Bernoulli- Gaussian approximate message passing, " in Proc. Asilomar Conf. Signals Syst. Comput., Pacific Grove, CA, USA, Nov. 2011, pp. 799-803.
    • (2011) Proc. Asilomar Conf. Signals Syst. Comput. , pp. 799-803
    • Vila, J.P.1    Schniter, P.2
  • 3
    • 84868564170 scopus 로고    scopus 로고
    • Expectation-maximization Gaussian-mixture approximate message passing
    • Princeton, NJ, USA, Mar.
    • J. P. Vila and P. Schniter, "Expectation-maximization Gaussian-mixture approximate message passing, " in Proc. Conf. Inf. Sci. Syst., Princeton, NJ, USA, Mar. 2012, pp. 1-6.
    • (2012) Proc. Conf. Inf. Sci. Syst. , pp. 1-6
    • Vila, J.P.1    Schniter, P.2
  • 5
    • 84867553573 scopus 로고    scopus 로고
    • Universality in polytope phase transitions and iterative algorithms
    • Boston, MA, USA, Jun.
    • M. Bayati, M. Lelarge, and A. Montanari, "Universality in polytope phase transitions and iterative algorithms, " in Proc. IEEE Int. Symp. Inf. Theory, Boston, MA, USA, Jun. 2012, pp. 1-5.
    • (2012) Proc. IEEE Int. Symp. Inf. Theory , pp. 1-5
    • Bayati, M.1    Lelarge, M.2    Montanari, A.3
  • 6
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, "Regression shrinkage and selection via the lasso, " J. Roy. Statist. Soc. B, vol. 58, no. 1, pp. 267-288, 1996.
    • (1996) J. Roy. Statist. Soc. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 8
    • 73149095252 scopus 로고    scopus 로고
    • Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing
    • D. L. Donoho and J. Tanner, "Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing, " Philos. Trans. Roy. Soc. A, vol. 367, no. 1906, pp. 4273-4293, 2009.
    • (2009) Philos. Trans. Roy. Soc. A , vol.367 , Issue.1906 , pp. 4273-4293
    • Donoho, D.L.1    Tanner, J.2
  • 9
    • 80053933128 scopus 로고    scopus 로고
    • The noise-sensitivity phase transition in compressed sensing
    • Oct.
    • D. L. Donoho, A. Maleki, and A. Montanari, "The noise-sensitivity phase transition in compressed sensing, " IEEE Trans. Inf. Theory, vol. 57, no. 10, pp. 6920-6941, Oct. 2011.
    • (2011) IEEE Trans. Inf. Theory , vol.57 , Issue.10 , pp. 6920-6941
    • Donoho, D.L.1    Maleki, A.2    Montanari, A.3
  • 10
    • 73149095169 scopus 로고    scopus 로고
    • Message passing algorithms for compressed sensing
    • Nov.
    • D. L. Donoho, A. Maleki, and A. Montanari, "Message passing algorithms for compressed sensing, " in Proc. Natl. Acad. Sci., Nov. 2009, vol. 106, pp. 18914-18919.
    • (2009) Proc. Natl. Acad. Sci. , vol.106 , pp. 18914-18919
    • Donoho, D.L.1    Maleki, A.2    Montanari, A.3
  • 11
    • 84866494005 scopus 로고    scopus 로고
    • Optimal phase transitions in compressed sensing
    • Oct.
    • Y. Wu and S. Verdú, "Optimal phase transitions in compressed sensing, " IEEE Trans. Inf. Theory, vol. 58, pp. 6241-6263, Oct. 2012.
    • (2012) IEEE Trans. Inf. Theory , vol.58 , pp. 6241-6263
    • Wu, Y.1    Verdú, S.2
  • 12
    • 77954825041 scopus 로고    scopus 로고
    • Message passing algorithms for compressed sensing: I. Motivation and construction
    • Cairo, Egypt, Jan.
    • D. L. Donoho, A. Maleki, and A. Montanari, "Message passing algorithms for compressed sensing: I. Motivation and construction, " in Proc. Inf. Theory Workshop, Cairo, Egypt, Jan. 2010, pp. 1-5.
    • (2010) Proc. Inf. Theory Workshop , pp. 1-5
    • Donoho, D.L.1    Maleki, A.2    Montanari, A.3
  • 13
    • 79251496987 scopus 로고    scopus 로고
    • The dynamics of message passing on dense graphs, with applications to compressed sensing
    • Feb.
    • M. Bayati and A. Montanari, "The dynamics of message passing on dense graphs, with applications to compressed sensing, " IEEE Trans. Inf. Theory, vol. 57, pp. 764-785, Feb. 2011.
    • (2011) IEEE Trans. Inf. Theory , vol.57 , pp. 764-785
    • Bayati, M.1    Montanari, A.2
  • 14
    • 80054799706 scopus 로고    scopus 로고
    • Generalized approximate message passing for estimation with random linear mixing
    • Saint Petersburg, Russia, Aug.
    • S. Rangan, "Generalized approximate message passing for estimation with random linear mixing, " in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Saint Petersburg, Russia, Aug. 2011, pp. 2168-2172.
    • (2011) Proc. IEEE Int. Symp. Inf. Theory (ISIT) , pp. 2168-2172
    • Rangan, S.1
  • 15
    • 0002629270 scopus 로고
    • Maximum-likelihood from incomplete data via the em algorithm
    • A. Dempster, N. M. Laird, and D. B. Rubin, "Maximum-likelihood from incomplete data via the EM algorithm, " J. Roy. Statist. Soc., vol. 39, pp. 1-17, 1977.
    • (1977) J. Roy. Statist. Soc. , vol.39 , pp. 1-17
    • Dempster, A.1    Laird, N.M.2    Rubin, D.B.3
  • 17
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • M. E. Tipping, "Sparse Bayesian learning and the relevance vector machine, " J. Mach. Learn. Res., vol. 1, pp. 211-244, 2001.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 18
    • 3543103176 scopus 로고    scopus 로고
    • Sparse Bayesian learning for basis selection
    • Aug.
    • D. P. Wipf and B. D. Rao, "Sparse Bayesian learning for basis selection, " IEEE Trans. Signal Process., vol. 52, pp. 2153-2164, Aug. 2004.
    • (2004) IEEE Trans. Signal Process. , vol.52 , pp. 2153-2164
    • Wipf, D.P.1    Rao, B.D.2
  • 19
    • 44849087307 scopus 로고    scopus 로고
    • Bayesian compressive sensing
    • Jun.
    • S. Ji, Y. Xue, and L. Carin, "Bayesian compressive sensing, " IEEE Trans. Signal Process., vol. 56, pp. 2346-2356, Jun. 2008.
    • (2008) IEEE Trans. Signal Process. , vol.56 , pp. 2346-2356
    • Ji, S.1    Xue, Y.2    Carin, L.3
  • 20
    • 84877769740 scopus 로고    scopus 로고
    • Approximate message passing with consistent parameter estimation and applications to sparse learning
    • Lake Tahoe, NV, USA, Dec.
    • U. S.Kamilov, S.Rangan, A. K. Fletcher, andM. Unser, "Approximate message passing with consistent parameter estimation and applications to sparse learning, " in Proc. Neural Inf. Process. Syst. Conf. (NIPS), Lake Tahoe, NV, USA, Dec. 2012, pp. 2447-2455.
    • (2012) Proc. Neural Inf. Process. Syst. Conf. (NIPS) , pp. 2447-2455
    • Kamilov, U.1    Rangan, S.2    Fletcher, A.K.3    Unser, M.4
  • 22
    • 0002210265 scopus 로고
    • On the convergence properties of the em algorithm
    • C. F. J. Wu, "On the convergence properties of the EM algorithm, " Ann. Statist., vol. 11, no. 1, pp. 95-103, 1983.
    • (1983) Ann. Statist. , vol.11 , Issue.1 , pp. 95-103
    • Wu, C.F.J.1
  • 23
    • 0002788893 scopus 로고    scopus 로고
    • A view of the em algorithm that justifies incremental, sparse, and other variants
    • MA, USA: MIT Press
    • R. Neal and G. Hinton, , M. I. Jordan, Ed., "A view of the EM algorithm that justifies incremental, sparse, and other variants, " in Learning in Graphical Models. Cambridge, MA, USA: MIT Press, 1999, pp. 355-368.
    • (1999) Learning in Graphical Models. Cambridge , pp. 355-368
    • Neal, R.1    Hinton, G.2    Jordan, M.I.3
  • 25
    • 85032762613 scopus 로고    scopus 로고
    • Model-order selection: A review of information criterion rules
    • Jul.
    • P. Stoica and Y. Selén, "Model-order selection: A review of information criterion rules, " IEEE Signal Process. Mag., vol. 21, pp. 36-47, Jul. 2004.
    • (2004) IEEE Signal Process. Mag. , vol.21 , pp. 36-47
    • Stoica, P.1    Selén, Y.2
  • 26
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems, " SIAM J. Imag. Sci., vol. 2, no. 1, pp. 183-202, 2009.
    • (2009) SIAM J. Imag. Sci. , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 27
    • 84872876101 scopus 로고    scopus 로고
    • Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices
    • Jan.
    • H. Monajemi, S. Jafarpour, M. Gavish, and D. L. Donoho, "Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices, " in Proc. Natl. Acad. Sci., Jan. 2013, vol. 110, pp. 1181-1186, Stat 330/CME 362 Collaboration.
    • (2013) Proc. Natl. Acad. Sci. , vol.110 , pp. 1181-1186
    • Monajemi, H.1    Jafarpour, S.2    Gavish, M.3    Donoho, D.L.4
  • 29
    • 0027814133 scopus 로고
    • Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition
    • Pacific Grove, CA, USA
    • Y. C. Pati, R. Rezaiifar, and P. S.Krishnaprasad, "Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition, " in Proc. Asilomar Conf. Signals Syst. Comput., Pacific Grove, CA, USA, 1993, pp. 40-44.
    • (1993) Proc. Asilomar Conf. Signals Syst. Comput. , pp. 40-44
    • Pati, Y.C.1    Rezaiifar, R.2    Krishnaprasad, P.3
  • 30
    • 65749110333 scopus 로고    scopus 로고
    • Subspace pursuit for compressive sensing reconstruction
    • Mar.
    • W. Dai and O. Milenkovic, "Subspace pursuit for compressive sensing reconstruction, " IEEE Trans. Inf. Theory, vol. 55, pp. 2230-2249, Mar. 2009.
    • (2009) IEEE Trans. Inf. Theory , vol.55 , pp. 2230-2249
    • Dai, W.1    Milenkovic, O.2
  • 31
    • 80051711912 scopus 로고    scopus 로고
    • Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning
    • Sep.
    • Z. Zhang and B. D. Rao, "Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning, " IEEE J. Sel. Topics Signal Process, vol. 5, pp. 912-926, Sep. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process , vol.5 , pp. 912-926
    • Zhang, Z.1    Rao, B.D.2
  • 32
    • 65649137930 scopus 로고    scopus 로고
    • Probing the Pareto frontier for basis pursuit solutions
    • E. van den Berg andM. P. Friedlander, "Probing the Pareto frontier for basis pursuit solutions, " SIAM J. Scientif. Comput., vol. 31, no. 2, pp. 890-912, 2008.
    • (2008) SIAM J. Scientif. Comput. , vol.31 , Issue.2 , pp. 890-912
    • Van Den Berg, E.1    Friedlander, M.P.2
  • 33
    • 58649115827 scopus 로고    scopus 로고
    • A fast approach for overcomplete sparse decomposition based on smoothed norm
    • Jan.
    • H. Mohimani, M. Babaie-Zadeh, and C. Jutten, "A fast approach for overcomplete sparse decomposition based on smoothed norm, " IEEE Trans. Signal Process., vol. 57, pp. 289-301, Jan. 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , pp. 289-301
    • Mohimani, H.1    Babaie-Zadeh, M.2    Jutten, C.3
  • 34
  • 35
    • 77955672486 scopus 로고    scopus 로고
    • Learning with compressible priors
    • Vancouver, BC, Canada, Dec.
    • V. Cevher, "Learning with compressible priors, " in Proc. Neural Inf. Process. Syst. Conf., Vancouver, BC, Canada, Dec. 2009, pp. 261-269.
    • (2009) Proc. Neural Inf. Process. Syst. Conf. , pp. 261-269
    • Cevher, V.1
  • 36
    • 84868222706 scopus 로고    scopus 로고
    • A generalized framework for learning and recovery of structured sparse signals
    • Ann Arbor, MI, USA, Aug.
    • J. Ziniel, S. Rangan, and P. Schniter, "A generalized framework for learning and recovery of structured sparse signals, " in Proc. IEEE Workshop Statist. Signal Process., Ann Arbor, MI, USA, Aug. 2012, pp. 325-328.
    • (2012) Proc. IEEE Workshop Statist. Signal Process. , pp. 325-328
    • Ziniel, J.1    Rangan, S.2    Schniter, P.3
  • 37
    • 84883436896 scopus 로고    scopus 로고
    • Compressive Sensing Resources: References and Software
    • Compressive Sensing Resources: References and Software [Online]. Available: http://dsp.rice.edu/cs


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.