-
1
-
-
77956620727
-
Biocompatible silica nanoparticles-insulin conjugates for mesenchymal stem cell adipogenic differentiation
-
Liu D, He X, Wang K, He C, Shi H, Jian L. Biocompatible silica nanoparticles-insulin conjugates for mesenchymal stem cell adipogenic differentiation. Bioconjug Chem. 2010;21(9):1673–1684
-
(2010)
Bioconjug Chem
, vol.21
, Issue.9
, pp. 1673-1684
-
-
Liu, D.1
He, X.2
Wang, K.3
He, C.4
Shi, H.5
Jian, L.6
-
2
-
-
63049094179
-
Biodegradable luminescent porous silicon nanoparticles for in vivo applications
-
Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater. 2009;8(4):331–336
-
(2009)
Nat Mater
, vol.8
, Issue.4
, pp. 331-336
-
-
Park, J.H.1
Gu, L.2
Von Maltzahn, G.3
Ruoslahti, E.4
Bhatia, S.N.5
Sailor, M.J.6
-
3
-
-
84875359495
-
Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility
-
Tarn D, Ashley CE, Xue M, Carnes EC, Zink JI, Brinker CJ. Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc Chem Res. 2013;46(3):792–801
-
(2013)
Acc Chem Res
, vol.46
, Issue.3
, pp. 792-801
-
-
Tarn, D.1
Ashley, C.E.2
Xue, M.3
Carnes, E.C.4
Zink, J.I.5
Brinker, C.J.6
-
4
-
-
84855301792
-
Organically modified silica nanoparticles are biocompatible and can be targeted to neurons in vivo
-
Barandeh F, Nguyen PL, Kumar R, et al. Organically modified silica nanoparticles are biocompatible and can be targeted to neurons in vivo. PLoS One. 2012;7(1):e29424
-
(2012)
Plos One
, vol.7
, Issue.1
-
-
Barandeh, F.1
Nguyen, P.L.2
Kumar, R.3
-
5
-
-
84878572520
-
Brillouin spectroscopy of a novel baria-doped silica glass optical fiber
-
Dragic P, Kucera C, Furtick J, Guerrier J, Hawkins T, Ballato J. Brillouin spectroscopy of a novel baria-doped silica glass optical fiber. Opt Express. 2013;21(9):10924–10941
-
(2013)
Opt Express
, vol.21
, Issue.9
, pp. 10924-10941
-
-
Dragic, P.1
Kucera, C.2
Furtick, J.3
Guerrier, J.4
Hawkins, T.5
Ballato, J.6
-
6
-
-
0037875147
-
Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses
-
Watanabe W, Kuroda D, Itoh K, Nishii J. Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses. Opt Express. 2002;10(19):978–983
-
(2002)
Opt Express
, vol.10
, Issue.19
, pp. 978-983
-
-
Watanabe, W.1
Kuroda, D.2
Itoh, K.3
Nishii, J.4
-
7
-
-
84871811274
-
Mesoporous silica nanoparticles: A multifunctional nano therapeutic system
-
Mai WX, Meng H. Mesoporous silica nanoparticles: a multifunctional nano therapeutic system. Integr Biol (Camb). 2013;5(1):19–28
-
(2013)
Integr Biol (Camb)
, vol.5
, Issue.1
, pp. 19-28
-
-
Mai, W.X.1
Meng, H.2
-
8
-
-
34547587931
-
Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems
-
Trewyn BG, Giri S, Slowing II, Lin VS. Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems. Chem Commun (Camb). 2007(31):3236–3245
-
(2007)
Chem Commun (Camb)
, Issue.31
, pp. 3236-3245
-
-
Trewyn, B.G.1
Giri, S.2
Slowing, I.I.3
Lin, V.S.4
-
9
-
-
84880309045
-
Functionalized silica nanoparticles: A platform for fluorescence imaging at the cell and small animal levels
-
Wang K, He X, Yang X, Shi H. Functionalized silica nanoparticles: a platform for fluorescence imaging at the cell and small animal levels. Acc Chem Res. 2013;46(7):1367–1376
-
(2013)
Acc Chem Res
, vol.46
, Issue.7
, pp. 1367-1376
-
-
Wang, K.1
He, X.2
Yang, X.3
Shi, H.4
-
10
-
-
84875873881
-
Effect of the size and surface charge of silica nanoparticles on cutaneous toxicity
-
Park YH, Bae H, Jang Y, et al. Effect of the size and surface charge of silica nanoparticles on cutaneous toxicity. Mol Cell Toxicol. 2013;9(1):67–74
-
(2013)
Mol Cell Toxicol
, vol.9
, Issue.1
, pp. 67-74
-
-
Park, Y.H.1
Bae, H.2
Jang, Y.3
-
11
-
-
84859520018
-
Assessment of DNA damage caused by locally produced hydroxyapatite-silica nanocomposite using Comet assay on human lung fibroblast cell line
-
Musa M, Kannan T, Masudi SA, Rahman I. Assessment of DNA damage caused by locally produced hydroxyapatite-silica nanocomposite using Comet assay on human lung fibroblast cell line. Mol Cell Toxicol. 2012;8(1):53–60
-
(2012)
Mol Cell Toxicol
, vol.8
, Issue.1
, pp. 53-60
-
-
Musa, M.1
Kannan, T.2
Masudi, S.A.3
Rahman, I.4
-
12
-
-
84872360422
-
Silica nanoparticles-induced cytotoxicity, oxidative stress and apoptosis in cultured A431 and A549 cells
-
Ahamed M. Silica nanoparticles-induced cytotoxicity, oxidative stress and apoptosis in cultured A431 and A549 cells. Hum Exp Toxicol. 2013;32(2):186–195
-
(2013)
Hum Exp Toxicol
, vol.32
, Issue.2
, pp. 186-195
-
-
Ahamed, M.1
-
13
-
-
79952117910
-
Treatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alters their expression of mitochondrial and cell signaling proteins
-
Lai JC, Ananthakrishnan G, Jandhyam S, et al. Treatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alters their expression of mitochondrial and cell signaling proteins. Int J Nanomedicine. 2010;5:715–723
-
(2010)
Int J Nanomedicine
, vol.5
, pp. 715-723
-
-
Lai, J.C.1
Ananthakrishnan, G.2
Jandhyam, S.3
-
14
-
-
84877803195
-
Cardiovascular toxicity evaluation of silica nanoparticles in endothelial cells and zebrafish model
-
Duan J, Yu Y, Li Y, Sun Z. Cardiovascular toxicity evaluation of silica nanoparticles in endothelial cells and zebrafish model. Biomaterials. 2013;34(23):5853–5862
-
(2013)
Biomaterials
, vol.34
, Issue.23
, pp. 5853-5862
-
-
Duan, J.1
Yu, Y.2
Li, Y.3
Sun, Z.4
-
15
-
-
57649243749
-
Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro
-
Park EJ, Park K. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett. 2009;184(1):18–25
-
(2009)
Toxicol Lett
, vol.184
, Issue.1
, pp. 18-25
-
-
Park, E.J.1
Park, K.2
-
16
-
-
84876096177
-
Acute toxicity of amorphous silica nanoparticles in intravenously exposed ICR mice
-
Yu Y, Li Y, Wang W, et al. Acute toxicity of amorphous silica nanoparticles in intravenously exposed ICR mice. PLoS One. 2013;8(4): e61346
-
(2013)
Plos One
, vol.8
, Issue.4
-
-
Yu, Y.1
Li, Y.2
Wang, W.3
-
17
-
-
77952553605
-
Biodistribution and toxicity of intravenously administered silica nanoparticles in mice
-
Xie G, Sun J, Zhong G, Shi L, Zhang D. Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch Toxicol. 2010;84(3):183–190
-
(2010)
Arch Toxicol
, vol.84
, Issue.3
, pp. 183-190
-
-
Xie, G.1
Sun, J.2
Zhong, G.3
Shi, L.4
Zhang, D.5
-
18
-
-
78650266662
-
Single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenously exposed mice
-
Liu T, Li L, Teng X, et al. Single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenously exposed mice. Biomaterials. 2011;32(6):1657–1668
-
(2011)
Biomaterials
, vol.32
, Issue.6
, pp. 1657-1668
-
-
Liu, T.1
Li, L.2
Teng, X.3
-
19
-
-
77649179574
-
Nano-SiO2 induces apoptosis via activation of p53 and Bax mediated by oxidative stress in human hepatic cell line
-
2 induces apoptosis via activation of p53 and Bax mediated by oxidative stress in human hepatic cell line. Toxicol In Vitro. 2010;24(3):751–758
-
(2010)
Toxicol in Vitro
, vol.24
, Issue.3
, pp. 751-758
-
-
Ye, Y.1
Liu, J.2
Xu, J.3
Sun, L.4
Chen, M.5
Lan, M.6
-
20
-
-
84858860290
-
Effects of SiO2 nanoparticles on HFL-I activating ROS-mediated apoptosis via p53 pathway
-
2 nanoparticles on HFL-I activating ROS-mediated apoptosis via p53 pathway. J Appl Toxicol. 2012;32(5):358–364
-
(2012)
J Appl Toxicol
, vol.32
, Issue.5
, pp. 358-364
-
-
Xu, Z.1
Chou, L.2
Sun, J.3
-
21
-
-
84862902475
-
Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells
-
Passagne I, Morille M, Rousset M, Pujalte I, L’Azou B. Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells. Toxicology. 2012;299(2–3):112–124
-
(2012)
Toxicology
, vol.299
, Issue.2-3
, pp. 112-124
-
-
Passagne, I.1
Morille, M.2
Rousset, M.3
Pujalte, I.4
L’Azou, B.5
-
22
-
-
77951621268
-
In vitro toxicity of silica nanoparticles in myocardial cells
-
Ye Y, Liu J, Chen M, Sun L, Lan M. In vitro toxicity of silica nanoparticles in myocardial cells. Environ Toxicol Pharmacol. 2010;29(2): 131–137
-
(2010)
Environ Toxicol Pharmacol
, vol.29
, Issue.2
, pp. 131-137
-
-
Ye, Y.1
Liu, J.2
Chen, M.3
Sun, L.4
Lan, M.5
-
23
-
-
84874092896
-
Effect of cerium oxide nanoparticles to inflammation and oxidative DNA damages in H9c2 cells
-
Rim K, Kim S, Song S, Park J. Effect of cerium oxide nanoparticles to inflammation and oxidative DNA damages in H9c2 cells. Mol Cell Toxicol. 2012;8(3):271–280
-
(2012)
Mol Cell Toxicol
, vol.8
, Issue.3
, pp. 271-280
-
-
Rim, K.1
Kim, S.2
Song, S.3
Park, J.4
-
24
-
-
84876259021
-
Oxidative stress in juvenile common carp (Cyprinus carpio) exposed to TiO2 nanoparticles
-
Lee B, Kim K, Cho J, et al. Oxidative stress in juvenile common carp (Cyprinus carpio) exposed to TiO2 nanoparticles. Mol Cell Toxicol. 2012;8(4):357–366
-
(2012)
Mol Cell Toxicol
, vol.8
, Issue.4
, pp. 357-366
-
-
Lee, B.1
Kim, K.2
Cho, J.3
-
25
-
-
84870153036
-
In vivo toxicity of intravenously administered silica and silicon nanoparticles
-
Ivanov S, Zhuravsky S, Yukina G, Tomson V, Korolev D, Galagudza M. In vivo toxicity of intravenously administered silica and silicon nanoparticles. Materials. 2012;5(10):1873–1889
-
(2012)
Materials
, vol.5
, Issue.10
, pp. 1873-1889
-
-
Ivanov, S.1
Zhuravsky, S.2
Yukina, G.3
Tomson, V.4
Korolev, D.5
Galagudza, M.6
-
26
-
-
84883245371
-
Identifying specific protein residues that guide surface interactions and orientation on silica nanoparticles
-
Shrivastava S, McCallum SA, Nuffer JH, Qian X, Siegel RW, Dordick JS. Identifying specific protein residues that guide surface interactions and orientation on silica nanoparticles. Langmuir. 2013;29(34):10841–10849
-
(2013)
Langmuir
, vol.29
, Issue.34
, pp. 10841-10849
-
-
Shrivastava, S.1
McCallum, S.A.2
Nuffer, J.H.3
Qian, X.4
Siegel, R.W.5
Dordick, J.S.6
-
27
-
-
4043075579
-
Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme
-
Vertegel AA, Siegel RW, Dordick JS. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir. 2004;20(16):6800–6807
-
(2004)
Langmuir
, vol.20
, Issue.16
, pp. 6800-6807
-
-
Vertegel, A.A.1
Siegel, R.W.2
Dordick, J.S.3
-
28
-
-
84902951543
-
Colloidal properties of surface coated colloidal silica nanoparticles in aqueous and physiological solutions
-
Kim KM, Kim HM, Choi MH, et al. Colloidal properties of surface coated colloidal silica nanoparticles in aqueous and physiological solutions. Sci Adv Mat. 2014;6(7):1573–1581
-
(2014)
Sci Adv Mat
, vol.6
, Issue.7
, pp. 1573-1581
-
-
Kim, K.M.1
Kim, H.M.2
Choi, M.H.3
-
29
-
-
64549104807
-
ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks
-
Bindea G, Mlecnik B, Hackl H, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–1093
-
(2009)
Bioinformatics
, vol.25
, Issue.8
, pp. 1091-1093
-
-
Bindea, G.1
Mlecnik, B.2
Hackl, H.3
-
30
-
-
55749091647
-
Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts
-
Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A. 2008;105(38):14265–14270
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, Issue.38
, pp. 14265-14270
-
-
Lundqvist, M.1
Stigler, J.2
Elia, G.3
Lynch, I.4
Cedervall, T.5
Dawson, K.A.6
-
31
-
-
70350680824
-
Differential plasma protein binding to metal oxide nanoparticles
-
Deng ZJ, Mortimer G, Schiller T, Musumeci A, Martin D, Minchin RF. Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology. 2009;20(45):455101
-
(2009)
Nanotechnology
, vol.20
, Issue.45
-
-
Deng, Z.J.1
Mortimer, G.2
Schiller, T.3
Musumeci, A.4
Martin, D.5
Minchin, R.F.6
-
32
-
-
84864779299
-
Nanoparticle surface charge mediates the cellular receptors used by protein-nanoparticle complexes
-
Fleischer CC, Payne CK. Nanoparticle surface charge mediates the cellular receptors used by protein-nanoparticle complexes. J Phys Chem B. 2012;116(30):8901–8907
-
(2012)
J Phys Chem B
, vol.116
, Issue.30
, pp. 8901-8907
-
-
Fleischer, C.C.1
Payne, C.K.2
-
33
-
-
81855192707
-
Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size
-
Zhang H, Burnum KE, Luna ML, et al. Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics. 2011;11(23):4569–4577
-
(2011)
Proteomics
, vol.11
, Issue.23
, pp. 4569-4577
-
-
Zhang, H.1
Burnum, K.E.2
Luna, M.L.3
-
34
-
-
84878581944
-
Dynamics of nanoparticle-protein corona complex formation: Analytical results from population balance equations
-
Darabi Sahneh F, Scoglio C, Riviere J. Dynamics of nanoparticle-protein corona complex formation: analytical results from population balance equations. PLoS One. 2013;8(5):e64690
-
(2013)
Plos One
, vol.8
, Issue.5
-
-
Darabi Sahneh, F.1
Scoglio, C.2
Riviere, J.3
-
35
-
-
33847789142
-
Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles
-
Cedervall T, Lynch I, Lindman S, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Sci Acad U S A. 2007;104(7): 2050–2055
-
(2007)
Proc Natl Sci Acad U S A
, vol.104
, Issue.7
, pp. 2050-2055
-
-
Cedervall, T.1
Lynch, I.2
Lindman, S.3
-
36
-
-
34547399502
-
Detailed identification of plasma proteins adsorbed on copolymer nanoparticles
-
Cedervall T, Lynch I, Foy M, et al. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed Engl. 2007;46(30):5754–5756
-
(2007)
Angew Chem Int Ed Engl
, vol.46
, Issue.30
, pp. 5754-5756
-
-
Cedervall, T.1
Lynch, I.2
Foy, M.3
-
38
-
-
0035984812
-
Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier
-
Kreuter J, Shamenkov D, Petrov V, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target. 2002;10(4):317–325
-
(2002)
J Drug Target
, vol.10
, Issue.4
, pp. 317-325
-
-
Kreuter, J.1
Shamenkov, D.2
Petrov, V.3
-
39
-
-
79959790434
-
Neurotoxicity of silica nanoparticles: Brain localization and dopaminergic neurons damage pathways
-
Wu J, Wang C, Sun J, Xue Y. Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways. ACS Nano. 2011;5(6):4476–4489
-
(2011)
ACS Nano
, vol.5
, Issue.6
, pp. 4476-4489
-
-
Wu, J.1
Wang, C.2
Sun, J.3
Xue, Y.4
-
40
-
-
79951578016
-
Systemic distribution, nuclear entry and cytotoxicity of amorphous nanosilica following topical application
-
Nabeshi H, Yoshikawa T, Matsuyama K, et al. Systemic distribution, nuclear entry and cytotoxicity of amorphous nanosilica following topical application. Biomaterials. 2011;32(11):2713–2724
-
(2011)
Biomaterials
, vol.32
, Issue.11
, pp. 2713-2724
-
-
Nabeshi, H.1
Yoshikawa, T.2
Matsuyama, K.3
-
41
-
-
78650606928
-
Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation
-
Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol. 2011;6(1):39–44
-
(2011)
Nat Nanotechnol
, vol.6
, Issue.1
, pp. 39-44
-
-
Deng, Z.J.1
Liang, M.2
Monteiro, M.3
Toth, I.4
Minchin, R.F.5
-
42
-
-
25644454502
-
Complement activation and protein adsorption by carbon nanotubes
-
Salvador-Morales C, Flahaut E, Sim E, Sloan J, Green ML, Sim RB. Complement activation and protein adsorption by carbon nanotubes. Mol Immunol. 2006;43(3):193–201
-
(2006)
Mol Immunol
, vol.43
, Issue.3
, pp. 193-201
-
-
Salvador-Morales, C.1
Flahaut, E.2
Sim, E.3
Sloan, J.4
Green, M.L.5
Sim, R.B.6
-
43
-
-
34547690726
-
Immunological properties of engineered nanomaterials
-
Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2007;2(8):469–478
-
(2007)
Nat Nanotechnol
, vol.2
, Issue.8
, pp. 469-478
-
-
Dobrovolskaia, M.A.1
McNeil, S.E.2
-
44
-
-
52049097752
-
Method for analysis of nanoparticle hemolytic properties in vitro
-
Dobrovolskaia MA, Clogston JD, Neun BW, Hall JB, Patri AK, McNeil SE. Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett. 2008;8(8):2180–2187
-
(2008)
Nano Lett
, vol.8
, Issue.8
, pp. 2180-2187
-
-
Dobrovolskaia, M.A.1
Clogston, J.D.2
Neun, B.W.3
Hall, J.B.4
Patri, A.K.5
McNeil, S.E.6
-
45
-
-
77957227472
-
Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction
-
Johnson-Lyles DN, Peifley K, Lockett S, et al. Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction. Toxicol Appl Pharmacol. 2010;248(3):249–258
-
(2010)
Toxicol Appl Pharmacol
, vol.248
, Issue.3
, pp. 249-258
-
-
Johnson-Lyles, D.N.1
Peifley, K.2
Lockett, S.3
-
46
-
-
67649491055
-
Understanding biophysicochemical interactions at the nano-bio interface
-
Nel AE, Madler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8(7):543–557.
-
(2009)
Nat Mater
, vol.8
, Issue.7
, pp. 543-557
-
-
Nel, A.E.1
Madler, L.2
Velegol, D.3
|