메뉴 건너뛰기




Volumn 11, Issue 3, 2015, Pages 189-194

Alternative pathways of osteoclastogenesis in inflammatory arthritis

Author keywords

[No Author keywords available]

Indexed keywords

CD135 ANTIGEN; COLONY STIMULATING FACTOR 1; GRANULOCYTE MACROPHAGE COLONY STIMULATING FACTOR; INTERLEUKIN 1; INTERLEUKIN 12; INTERLEUKIN 17; INTERLEUKIN 23; INTERLEUKIN 24; INTERLEUKIN 27; INTERLEUKIN 33; INTERLEUKIN 4; INTERLEUKIN 6; OSTEOCLAST DIFFERENTIATION FACTOR; PLACENTAL GROWTH FACTOR; SCATTER FACTOR; TUMOR NECROSIS FACTOR; VASCULOTROPIN;

EID: 84924160797     PISSN: 17594790     EISSN: 17594804     Source Type: Journal    
DOI: 10.1038/nrrheum.2014.198     Document Type: Review
Times cited : (105)

References (61)
  • 1
    • 0031817901 scopus 로고    scopus 로고
    • Magnetic resonance imaging of the wrist in early rheumatoid arthritis reveals a high prevalence of erosions at four months after symptom onset
    • McQueen, F. M., et al. Magnetic resonance imaging of the wrist in early rheumatoid arthritis reveals a high prevalence of erosions at four months after symptom onset. Ann. Rheum. Dis. 57, 350-356 (1998
    • (1998) Ann. Rheum. Dis , vol.57 , pp. 350-356
    • McQueen, F.M.1
  • 2
    • 0345099477 scopus 로고    scopus 로고
    • A prospective, clinical and radiological study of early psoriatic arthritis: An early synovitis clinic experience
    • Kane, D., Stafford, L., Bresnihan, B. & FitzGerald, O. A prospective, clinical and radiological study of early psoriatic arthritis: an early synovitis clinic experience. Rheumatology (Oxford) 42, 1460-1468 (2003
    • (2003) Rheumatology (Oxford , vol.42 , pp. 1460-1468
    • Kane, D.1    Stafford, L.2    Bresnihan, B.3    Fitzgerald, O.4
  • 3
    • 84861663218 scopus 로고    scopus 로고
    • Advances and challenges in imaging in juvenile idiopathic arthritis
    • Magni-Manzoni, S., Malattia, C., Lanni, S. & Ravelli, A. Advances and challenges in imaging in juvenile idiopathic arthritis. Nat. Rev. Rheumatol. 8, 329-336 (2012
    • (2012) Nat. Rev. Rheumatol , vol.8 , pp. 329-336
    • Magni-Manzoni, S.1    Malattia, C.2    Lanni, S.3    Ravelli, A.4
  • 4
    • 0043267732 scopus 로고    scopus 로고
    • Genetic regulation of osteoclast development and function
    • Teitelbaum, S. L. & Ross, F. P. Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4, 638-649 (2003
    • (2003) Nat. Rev. Genet , vol.4 , pp. 638-649
    • Teitelbaum, S.L.1    Ross, F.P.2
  • 6
    • 33645657715 scopus 로고    scopus 로고
    • Osteoimmunology: Interplay between the immune system and bone metabolism
    • Walsh, M. C., et al. Osteoimmunology: interplay between the immune system and bone metabolism. Annu. Rev. Immunol. 24, 33-63 (2006
    • (2006) Annu. Rev. Immunol , vol.24 , pp. 33-63
    • Walsh, M.C.1
  • 7
    • 80053978532 scopus 로고    scopus 로고
    • Matrix-embedded cells control osteoclast formation
    • Xiong, J., et al. Matrix-embedded cells control osteoclast formation. Nat. Med. 17, 1235-1241 (2011
    • (2011) Nat. Med , vol.17 , pp. 1235-1241
    • Xiong, J.1
  • 8
    • 52949136599 scopus 로고    scopus 로고
    • Transcriptional control of skeletogenesis
    • Karsenty, G. Transcriptional control of skeletogenesis. Annu. Rev. Genomics Hum. Genet. 9, 183-196 (2008
    • (2008) Annu. Rev. Genomics Hum. Genet , vol.9 , pp. 183-196
    • Karsenty, G.1
  • 9
    • 0037591425 scopus 로고    scopus 로고
    • Microphthalmia transcription factor and pu.1 synergistically induce the leukocyte receptor osteoclast-Associated receptor gene expression
    • So, H., et al. Microphthalmia transcription factor and PU.1 synergistically induce the leukocyte receptor osteoclast-Associated receptor gene expression. J. Biol. Chem. 278, 24209-24216 (2003
    • (2003) J. Biol. Chem , vol.278 , pp. 24209-24216
    • So, H.1
  • 10
    • 25444444351 scopus 로고    scopus 로고
    • Contribution of nuclear factor of activated t cells c1 to the transcriptional control of immunoreceptor osteoclast-Associated receptor but not triggering receptor expressed by myeloid cells 2 during osteoclastogenesis
    • Kim, Y., et al. Contribution of nuclear factor of activated T cells c1 to the transcriptional control of immunoreceptor osteoclast-Associated receptor but not triggering receptor expressed by myeloid cells 2 during osteoclastogenesis. J. Biol. Chem. 280, 32905-32913 (2005
    • (2005) J. Biol. Chem , vol.280 , pp. 32905-32913
    • Kim, Y.1
  • 11
    • 84902659907 scopus 로고    scopus 로고
    • Synovial explant inflammatory mediator production corresponds to rheumatoid arthritis imaging hallmarks: A cross sectional study
    • Andersen, M., et al. Synovial explant inflammatory mediator production corresponds to rheumatoid arthritis imaging hallmarks: a cross sectional study. Arthritis Res. Ther. 16, R107 (2014
    • (2014) Arthritis Res. Ther , vol.16 , pp. R107
    • Andersen, M.1
  • 12
    • 84867740805 scopus 로고    scopus 로고
    • Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages
    • Gautier, E. L., et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118-1128 (2012
    • (2012) Nat. Immunol , vol.13 , pp. 1118-1128
    • Gautier, E.L.1
  • 13
    • 79955750055 scopus 로고    scopus 로고
    • Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum
    • Bendall, S. C., et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687-696 (2011
    • (2011) Science , vol.332 , pp. 687-696
    • Bendall, S.C.1
  • 14
    • 77953268611 scopus 로고    scopus 로고
    • Alternative activation of macrophages: Mechanism and functions
    • Gordon, S. & Martinez, F. O. Alternative activation of macrophages: mechanism and functions. Immunity 32, 593-604 (2010
    • (2010) Immunity , vol.32 , pp. 593-604
    • Gordon, S.1    Martinez, F.O.2
  • 15
    • 73349101077 scopus 로고    scopus 로고
    • Inhibition of rank expression and osteoclastogenesis by tlrs and ifn γ in human osteoclast precursors
    • Ji, J. D., et al. Inhibition of RANK expression and osteoclastogenesis by TLRs and IFN γ in human osteoclast precursors. J. Immunol. 183, 7223-7233 (2009
    • (2009) J. Immunol , vol.183 , pp. 7223-7233
    • Ji, J.D.1
  • 16
    • 77949534181 scopus 로고    scopus 로고
    • Myeloid dap12-Associating lectin (mdl) 1 regulates synovial inflammation and bone erosion associated with autoimmune arthritis
    • Joyce-Shaikh, B., et al. Myeloid DAP12-Associating lectin (MDL) 1 regulates synovial inflammation and bone erosion associated with autoimmune arthritis. J. Exp. Med. 207, 579-589 (2010
    • (2010) J. Exp. Med , vol.207 , pp. 579-589
    • Joyce-Shaikh, B.1
  • 17
    • 11144354330 scopus 로고    scopus 로고
    • Costimulatory signals mediated by the itam motif cooperate with rankl for bone homeostasis
    • Koga, T., et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428, 758-763 (2004
    • (2004) Nature , vol.428 , pp. 758-763
    • Koga, T.1
  • 18
    • 0037148508 scopus 로고    scopus 로고
    • A novel member of the leukocyte receptor complex regulates osteoclast differentiation
    • Kim, N., Takami, M., Rho, J., Josien, R. & Choi, Y. A novel member of the leukocyte receptor complex regulates osteoclast differentiation. J. Exp. Med. 195, 201-209 (2002
    • (2002) J. Exp. Med , vol.195 , pp. 201-209
    • Kim, N.1    Takami, M.2    Rho, J.3    Josien, R.4    Choi, Y.5
  • 19
    • 33747748774 scopus 로고    scopus 로고
    • Immune interactions with cd4+ t cells promote the development of functional osteoclasts from murine cd11c+ dendritic cells
    • Alnaeeli, M., Penninger, J. M. & Teng, Y. T. A. Immune interactions with CD4+ T cells promote the development of functional osteoclasts from murine CD11c+ dendritic cells. J. Immunol. 177, 3314-3326 (2006
    • (2006) J. Immunol , vol.177 , pp. 3314-3326
    • Alnaeeli, M.1    Penninger, J.M.2    Teng, Y.T.A.3
  • 20
    • 58149398636 scopus 로고    scopus 로고
    • Bone marrow microenvironment controls the in vivo differentiation of murine dendritic cells into osteoclasts
    • Wakkach, A., et al. Bone marrow microenvironment controls the in vivo differentiation of murine dendritic cells into osteoclasts. Blood 112, 5074-5083 (2008
    • (2008) Blood , vol.112 , pp. 5074-5083
    • Wakkach, A.1
  • 21
    • 10244259169 scopus 로고    scopus 로고
    • Immature dendritic cell transdifferentiation into osteoclasts: A novel pathway sustained by the rheumatoid arthritis microenvironment
    • Rivollier, A., et al. Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment. Blood 104, 4029-4037 (2004
    • (2004) Blood , vol.104 , pp. 4029-4037
    • Rivollier, A.1
  • 22
    • 84878476529 scopus 로고    scopus 로고
    • Immature dendritic cells in multiple myeloma are prone to osteoclast-like differentiation through interleukin 17a stimulation
    • Tucci, M., et al. Immature dendritic cells in multiple myeloma are prone to osteoclast-like differentiation through interleukin 17A stimulation. Br. J. Haematol. 161, 821-831 (2013
    • (2013) Br. J. Haematol , vol.161 , pp. 821-831
    • Tucci, M.1
  • 23
    • 77950528208 scopus 로고    scopus 로고
    • Mediation of nonerosive arthritis in a mouse model of lupus by interferon α stimulated monocyte differentiation that is nonpermissive of osteoclastogenesis
    • Mensah, K. A., et al. Mediation of nonerosive arthritis in a mouse model of lupus by interferon α stimulated monocyte differentiation that is nonpermissive of osteoclastogenesis. Arthritis Rheum. 62, 1127-1137 (2010
    • (2010) Arthritis Rheum , vol.62 , pp. 1127-1137
    • Mensah, K.A.1
  • 24
    • 84876700126 scopus 로고    scopus 로고
    • Identification characterization, and isolation of a common progenitor for osteoclasts, macrophages, and dendritic cells from murine bone marrow and periphery
    • Jacome-Galarza, C. E., Lee, S. K., Lorenzo, J. A. & Aguila, H. L. Identification, characterization, and isolation of a common progenitor for osteoclasts, macrophages, and dendritic cells from murine bone marrow and periphery. J. Bone Miner. Res. 28, 1203-1213 (2013
    • (2013) J. Bone Miner. Res , vol.28 , pp. 1203-1213
    • Jacome-Galarza, C.E.1    Lee, S.K.2    Lorenzo, J.A.3    Aguila, H.L.4
  • 25
    • 0025332897 scopus 로고
    • The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene
    • Yoshida, H., et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345, 442-444 (1990
    • (1990) Nature , vol.345 , pp. 442-444
    • Yoshida, H.1
  • 26
    • 22544455619 scopus 로고    scopus 로고
    • The colony-stimulating factor 1 receptor is expressed on dendritic cells during differentiation and regulates their expansion
    • MacDonald, K. P., et al. The colony-stimulating factor 1 receptor is expressed on dendritic cells during differentiation and regulates their expansion. J. Immunol. 175, 1399-1405 (2005
    • (2005) J. Immunol , vol.175 , pp. 1399-1405
    • MacDonald, K.P.1
  • 27
    • 0033584243 scopus 로고    scopus 로고
    • Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption
    • Niida, S., et al. Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. J. Exp. Med. 190, 293-298 (1999
    • (1999) J. Exp. Med , vol.190 , pp. 293-298
    • Niida, S.1
  • 28
    • 0035525765 scopus 로고    scopus 로고
    • Flt3 ligand can substitute for macrophage colony-stimulating factor in support of osteoclast differentiation and function
    • Lean, J. M., Fuller, K. & Chambers, T. J. FLT3 ligand can substitute for macrophage colony-stimulating factor in support of osteoclast differentiation and function. Blood 98, 2707-2713 (2001
    • (2001) Blood , vol.98 , pp. 2707-2713
    • Lean, J.M.1    Fuller, K.2    Chambers, T.J.3
  • 29
    • 33749370406 scopus 로고    scopus 로고
    • Hepatocyte growth factor can substitute for m csf to support osteoclastogenesis
    • Adamopoulos, I. E., Xia, Z., Lau, Y. S. & Athanasou, N. A. Hepatocyte growth factor can substitute for M CSF to support osteoclastogenesis. Biochem. Biophys. Res. Commun. 350, 478-483 (2006
    • (2006) Biochem. Biophys. Res. Commun , vol.350 , pp. 478-483
    • Adamopoulos, I.E.1    Xia, Z.2    Lau, Y.S.3    Athanasou, N.A.4
  • 30
    • 77957115690 scopus 로고    scopus 로고
    • Functional overlap but differential expression of csf 1 and il 34 in their csf 1 receptor-mediated regulation of myeloid cells
    • Wei, S., et al. Functional overlap but differential expression of CSF 1 and IL 34 in their CSF 1 receptor-mediated regulation of myeloid cells. J. Leukoc. Biol. 88, 495-505 (2010
    • (2010) J. Leukoc. Biol , vol.88 , pp. 495-505
    • Wei, S.1
  • 31
    • 70349245002 scopus 로고    scopus 로고
    • Gm csf regulates fusion of mononuclear osteoclasts into bone-resorbing osteoclasts by activating the ras/erk pathway
    • Lee, M. S., et al. GM CSF regulates fusion of mononuclear osteoclasts into bone-resorbing osteoclasts by activating the Ras/ERK pathway. J. Immunol. 183, 3390-3399 (2009
    • (2009) J. Immunol , vol.183 , pp. 3390-3399
    • Lee, M.S.1
  • 32
    • 84555187551 scopus 로고    scopus 로고
    • Regulation of human osteoclast development by dendritic cell-specific transmembrane protein (dc stamp
    • Chiu, Y. H., et al. Regulation of human osteoclast development by dendritic cell-specific transmembrane protein (DC STAMP). J. Bone Miner. Res. 27, 79-92 (2012
    • (2012) J. Bone Miner. Res , vol.27 , pp. 79-92
    • Chiu, Y.H.1
  • 33
    • 33846000270 scopus 로고    scopus 로고
    • Macrophage lineage phenotypes and osteoclastogenesis-complexity in the control by gm csf and tgf β
    • Lari, R., et al Macrophage Lineage Phenotypes and Osteoclastogenesis-complexity in the Control by GM CSF and TGF β. Bone 40, 323-336 (2007
    • (2007) Bone , vol.40 , pp. 323-336
    • Lari, R.1
  • 34
    • 84862104611 scopus 로고    scopus 로고
    • Defining gm csf and macrophage csf dependent macrophage responses by in vitro models
    • Lacey, D. C., et al. Defining GM CSF and macrophage CSF dependent macrophage responses by in vitro models. J. Immunol. 188, 5752-5765 (2012
    • (2012) J. Immunol , vol.188 , pp. 5752-5765
    • Lacey, D.C.1
  • 35
    • 73349124125 scopus 로고    scopus 로고
    • Gm csf and il 4 induce dendritic cell differentiation and disrupt osteoclastogenesis through m csf receptor shedding by up-regulation of tnf α converting enzyme (tace
    • Hiasa, M., et al. GM CSF and IL 4 induce dendritic cell differentiation and disrupt osteoclastogenesis through M CSF receptor shedding by up-regulation of TNF α converting enzyme (TACE). Blood 114, 4517-4526 (2009
    • (2009) Blood , vol.114 , pp. 4517-4526
    • Hiasa, M.1
  • 36
    • 38649139342 scopus 로고    scopus 로고
    • Inflammatory osteoclastogenesis can be induced by gm csf and activated under tnf immunity
    • Nomura, K., Kuroda, S., Yoshikawa, H. & Tomita, T. Inflammatory osteoclastogenesis can be induced by GM CSF and activated under TNF immunity. Biochem. Biophys. Res. Commun. 367, 881-887 (2008
    • (2008) Biochem. Biophys. Res. Commun , vol.367 , pp. 881-887
    • Nomura, K.1    Kuroda, S.2    Yoshikawa, H.3    Tomita, T.4
  • 37
    • 84866848769 scopus 로고    scopus 로고
    • Vegf flt3 ligand plgf and hgf can substitute for m csf to induce human osteoclast formation: Implications for giant cell tumour pathobiology
    • Taylor, R. M., Kashima, T. G., Knowles, H. J. & Athanasou, N. A. VEGF, FLT3 ligand, PlGF and HGF can substitute for M CSF to induce human osteoclast formation: implications for giant cell tumour pathobiology. Lab. Invest. 92, 1398-1406 (2012
    • (2012) Lab. Invest , vol.92 , pp. 1398-1406
    • Taylor, R.M.1    Kashima, T.G.2    Knowles, H.J.3    Athanasou, N.A.4
  • 38
    • 84864152036 scopus 로고    scopus 로고
    • Il 34 is a tissue-restricted ligand of csf1r required for the development of langerhans cells and microglia
    • Wang, Y., et al. IL 34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13, 753-760 (2012
    • (2012) Nat. Immunol , vol.13 , pp. 753-760
    • Wang, Y.1
  • 40
    • 0031894140 scopus 로고    scopus 로고
    • Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis
    • Gravallese, E. M., et al. Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am. J. Pathol. 152, 943-951 (1998
    • (1998) Am. J. Pathol , vol.152 , pp. 943-951
    • Gravallese, E.M.1
  • 41
    • 33751521013 scopus 로고    scopus 로고
    • Th17 functions as an osteoclastogenic helper t cell subset that links t cell activation and bone destruction
    • Sato, K., et al. TH17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203, 2673-2682 (2006
    • (2006) J. Exp. Med , vol.203 , pp. 2673-2682
    • Sato, K.1
  • 42
    • 0035153246 scopus 로고    scopus 로고
    • Trance/rankl knockout mice are protected from bone erosion in a serum transfer model of arthritis
    • Pettit, A. R., et al. TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am. J. Pathol. 159, 1689-1699 (2001
    • (2001) Am. J. Pathol , vol.159 , pp. 1689-1699
    • Pettit, A.R.1
  • 43
    • 84865034614 scopus 로고    scopus 로고
    • Skeletal and extraskeletal actions of denosumab
    • Sinningen, K., et al. Skeletal and extraskeletal actions of denosumab. Endocrine 42, 52-62 (2012
    • (2012) Endocrine , vol.42 , pp. 52-62
    • Sinningen, K.1
  • 44
    • 12944262423 scopus 로고    scopus 로고
    • Rank is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism
    • Li, J., et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl Acad. Sci. USA 97, 1566-1571 (2000
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 1566-1571
    • Li, J.1
  • 45
    • 0034677177 scopus 로고    scopus 로고
    • Tumor necrosis factor α stimulates osteoclast differentiation by a mechanism independent of the odf/rankl-rank interaction
    • Kobayashi, K., et al. Tumor necrosis factor α stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J. Exp. Med. 191, 275-286 (2000
    • (2000) J. Exp. Med , vol.191 , pp. 275-286
    • Kobayashi, K.1
  • 46
    • 24344433524 scopus 로고    scopus 로고
    • Osteoclast differentiation independent of the trance-rank-Traf6 axis
    • Kim, N., et al. Osteoclast differentiation independent of the TRANCE-RANK-TRAF6 axis. J. Exp. Med. 202, 589-595 (2005
    • (2005) J. Exp. Med , vol.202 , pp. 589-595
    • Kim, N.1
  • 47
    • 14644427886 scopus 로고    scopus 로고
    • Strength of traf6 signalling determines osteoclastogenesis
    • Kadono, Y., et al. Strength of TRAF6 signalling determines osteoclastogenesis. EMBO Rep. 6, 171-176 (2005
    • (2005) EMBO Rep , vol.6 , pp. 171-176
    • Kadono, Y.1
  • 49
    • 68149163293 scopus 로고    scopus 로고
    • The mechanism of osteoclast differentiation induced by il 1
    • Kim, J. H., et al. The mechanism of osteoclast differentiation induced by IL 1. J. Immunol. 183, 1862-1870 (2009
    • (2009) J Immunol , vol.183 , pp. 1862-1870
    • Kim, J.H.1
  • 50
    • 79952159585 scopus 로고    scopus 로고
    • Tnf activates calcium-nuclear factor of activated t cells (nfat)c1 signaling pathways in human macrophages
    • Yarilina, A., Xu, K., Chen, J. & Ivashkiv, L. B. TNF activates calcium-nuclear factor of activated T cells (NFAT)c1 signaling pathways in human macrophages. Proc. Natl Acad. Sci. USA 108, 1573-1578 (2011
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 1573-1578
    • Yarilina, A.1    Xu, K.2    Chen, J.3    Ivashkiv, L.B.4
  • 51
    • 79960492398 scopus 로고    scopus 로고
    • Il 23 is critical for induction of arthritis, osteoclast formation, and maintenance of bone mass
    • Adamopoulos, I. E., et al. IL 23 is critical for induction of arthritis, osteoclast formation, and maintenance of bone mass. J. Immunol. 187, 951-959 (2011
    • (2011) J. Immunol , vol.187 , pp. 951-959
    • Adamopoulos, I.E.1
  • 52
    • 77949454280 scopus 로고    scopus 로고
    • Interleukin 17a upregulates receptor activator of nf ?b on osteoclast precursors
    • Adamopoulos, I. E., et al. Interleukin 17A upregulates receptor activator of NF ?B on osteoclast precursors. Arthritis Res. Ther. 12, R29 (2010
    • (2010) Arthritis Res. Ther , vol.12 , pp. R29
    • Adamopoulos, I.E.1
  • 53
    • 84897019848 scopus 로고    scopus 로고
    • Combination of tumor necrosis factor α and interleukin 6 induces mouse osteoclast-like cells with bone resorption activity both in vitro and in vivo
    • Yokota, K., et al. Combination of tumor necrosis factor α and interleukin 6 induces mouse osteoclast-like cells with bone resorption activity both in vitro and in vivo. Arthritis Rheumatol. 66, 121-129 (2014
    • (2014) Arthritis Rheumatol , vol.66 , pp. 121-129
    • Yokota, K.1
  • 54
    • 69449090213 scopus 로고    scopus 로고
    • Inhibition of interleukin 6 receptor directly blocks osteoclast formation in vitro and in vivo
    • Axmann, R., et al. Inhibition of interleukin 6 receptor directly blocks osteoclast formation in vitro and in vivo. Arthritis Rheum. 60, 2747-2756 (2009
    • (2009) Arthritis Rheum , vol.60 , pp. 2747-2756
    • Axmann, R.1
  • 56
    • 84875268816 scopus 로고    scopus 로고
    • The emerging role of interleukin 27 in inflammatory arthritis and bone destruction
    • Adamopoulos, I. E. & Pflanz, S. The emerging role of interleukin 27 in inflammatory arthritis and bone destruction. Cytokine Growth Factor Rev. 24, 115-121 (2013
    • (2013) Cytokine Growth Factor Rev , vol.24 , pp. 115-121
    • Adamopoulos, I.E.1    Pflanz, S.2
  • 57
    • 79958073057 scopus 로고    scopus 로고
    • Il 33 shifts the balance from osteoclast to alternatively activated macrophage differentiation and protects from tnf α mediated bone loss
    • Zaiss, M. M., et al. IL 33 shifts the balance from osteoclast to alternatively activated macrophage differentiation and protects from TNF α mediated bone loss. J. Immunol. 186, 6097-6105 (2011
    • (2011) J. Immunol , vol.186 , pp. 6097-6105
    • Zaiss, M.M.1
  • 58
    • 84870535425 scopus 로고    scopus 로고
    • Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function
    • Charles, J. F., et al. Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function. J. Clin. Invest. 122, 4592-4605 (2012
    • (2012) J. Clin. Invest , vol.122 , pp. 4592-4605
    • Charles, J.F.1
  • 59
    • 84894102230 scopus 로고    scopus 로고
    • Transcriptome-based network analysis reveals a spectrum model of human macrophage activation
    • Xue, J., et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40, 274-288 (2014
    • (2014) Immunity , vol.40 , pp. 274-288
    • Xue, J.1
  • 60
    • 84877587255 scopus 로고    scopus 로고
    • Monoclonal igg antibodies generated from joint-derived b cells of ra patients have a strong bias toward citrullinated autoantigen recognition
    • Amara, K., et al. Monoclonal IgG antibodies generated from joint-derived B cells of RA patients have a strong bias toward citrullinated autoantigen recognition. J. Exp. Med. 210, 445-455 (2013
    • (2013) J. Exp. Med , vol.210 , pp. 445-455
    • Amara, K.1
  • 61
    • 84860561645 scopus 로고    scopus 로고
    • Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin
    • Harre, U., et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J. Clin. Invest. 122, 1791-1802 (2012
    • (2012) J. Clin. Invest , vol.122 , pp. 1791-1802
    • Harre, U.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.