메뉴 건너뛰기




Volumn 157, Issue , 2015, Pages 91-104

A two-stage Markov blanket based feature selection algorithm for text classification

Author keywords

Markov blanket discovery; Text classification; Two stage feature selection

Indexed keywords

BISMUTH COMPOUNDS; CLASSIFIERS; FEATURE EXTRACTION; SUPPORT VECTOR MACHINES; TEXT PROCESSING;

EID: 84924067797     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.01.031     Document Type: Article
Times cited : (65)

References (47)
  • 1
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • Forman G. An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res. 2003, 3:1289-1305.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 3
    • 2342457848 scopus 로고    scopus 로고
    • Toward Optimal Feature Selection
    • Technical Report 1996-77, Stanford InfoLab
    • D. Koller, M. Sahami, Toward Optimal Feature Selection, Technical Report 1996-77, Stanford InfoLab, 1996.
    • (1996)
    • Koller, D.1    Sahami, M.2
  • 4
    • 84867846144 scopus 로고    scopus 로고
    • A novel probabilistic feature selection method for text classification
    • Uysal A.K., Gunal S. A novel probabilistic feature selection method for text classification. Knowl. Based Syst. 2012, 36(2):226-235.
    • (2012) Knowl. Based Syst. , vol.36 , Issue.2 , pp. 226-235
    • Uysal, A.K.1    Gunal, S.2
  • 5
    • 80955181170 scopus 로고    scopus 로고
    • A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm
    • Uguz H. A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm. Knowl. Based Syst. 2011, 24(7):1024-1032.
    • (2011) Knowl. Based Syst. , vol.24 , Issue.7 , pp. 1024-1032
    • Uguz, H.1
  • 9
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani F. Machine learning in automated text categorization. ACM Comput. Surv. 2002, 34(1):1-47.
    • (2002) ACM Comput. Surv. , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 13
    • 45549117987 scopus 로고
    • Term-weighting approaches in automatic text retrieval
    • Salton G., Buckley C. Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 1988, 24(5):513-523.
    • (1988) Inf. Process. Manag. , vol.24 , Issue.5 , pp. 513-523
    • Salton, G.1    Buckley, C.2
  • 14
  • 15
    • 78049527035 scopus 로고    scopus 로고
    • A comparative study of tf*idf, lsi and multi-words for text classification
    • Zhang W., Yoshida T., Tang X. A comparative study of tf*idf, lsi and multi-words for text classification. Expert Syst. Appl. 2011, 38:2758-2765.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 2758-2765
    • Zhang, W.1    Yoshida, T.2    Tang, X.3
  • 16
    • 84900496375 scopus 로고    scopus 로고
    • Development of feature selection algorithms for high-dimensional binary data
    • (Ph.D. thesis), Dept. of Electrical Engineering, University of Engineering and Technology, Lahore, Pakistan
    • K. Javed, Development of feature selection algorithms for high-dimensional binary data (Ph.D. thesis), Dept. of Electrical Engineering, University of Engineering and Technology, Lahore, Pakistan, 2012.
    • (2012)
    • Javed, K.1
  • 17
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu L., Liu H. Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 2004, 5:1205-1224.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 18
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., John G. Wrappers for feature subset selection. Artif. Intell. 1997, 97:273-324.
    • (1997) Artif. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 21
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., Elisseeff A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3:1157-1182.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 22
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash M., Liu H. Feature selection for classification. Intell. Data Anal. 1997, 1(3):131-156.
    • (1997) Intell. Data Anal. , vol.1 , Issue.3 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 23
    • 84900497735 scopus 로고    scopus 로고
    • The correctness problem: evaluating the ordering of binary features in rankings
    • Javed K., Saeed M., Babri H.A. The correctness problem: evaluating the ordering of binary features in rankings. Knowl. Inf. Syst. 2014, 39(3):543-563.
    • (2014) Knowl. Inf. Syst. , vol.39 , Issue.3 , pp. 543-563
    • Javed, K.1    Saeed, M.2    Babri, H.A.3
  • 24
    • 58349094507 scopus 로고    scopus 로고
    • Feature selection for text classification with naive bayes
    • Chen J., Huang H., Tian S., Qu Y. Feature selection for text classification with naive bayes. Expert Syst. Appl. 2009, 36(3):5432-5435.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.3 , pp. 5432-5435
    • Chen, J.1    Huang, H.2    Tian, S.3    Qu, Y.4
  • 25
    • 84856505051 scopus 로고    scopus 로고
    • Feature selection based on class-dependent densities for high-dimensional binary data
    • Javed K., Babri H., Saeed M. Feature selection based on class-dependent densities for high-dimensional binary data. IEEE Trans. Knowl. Data Eng. 2012, 24(3):465-477.
    • (2012) IEEE Trans. Knowl. Data Eng. , vol.24 , Issue.3 , pp. 465-477
    • Javed, K.1    Babri, H.2    Saeed, M.3
  • 26
    • 84924021589 scopus 로고    scopus 로고
    • Feature selection based on Markov blankets for the text classification problem
    • (M.Sc. thesis), Dept. of Electrical Engineering, University of Engineering and Technology, Lahore, Pakistan
    • S. Maruf, Feature selection based on Markov blankets for the text classification problem (M.Sc. thesis), Dept. of Electrical Engineering, University of Engineering and Technology, Lahore, Pakistan, 2014.
    • (2014)
    • Maruf, S.1
  • 27
    • 34047182490 scopus 로고    scopus 로고
    • Filter methods
    • Springer, I. Guyon, M. Nikravesh, S. Gunn, L. Zadeh (Eds.)
    • Duch W. Filter methods. Feature Extraction: Foundations and Applications 2006, 89-117. Springer. I. Guyon, M. Nikravesh, S. Gunn, L. Zadeh (Eds.).
    • (2006) Feature Extraction: Foundations and Applications , pp. 89-117
    • Duch, W.1
  • 28
    • 79952437887 scopus 로고    scopus 로고
    • Empirical study of feature selection methods based on individual feature evaluation for classification problems
    • Arauzo-Azofra A., Aznarte J., Benitez J. Empirical study of feature selection methods based on individual feature evaluation for classification problems. Expert Syst. Appl. 2011, 38(7):8170-8177.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.7 , pp. 8170-8177
    • Arauzo-Azofra, A.1    Aznarte, J.2    Benitez, J.3
  • 29
    • 84879386978 scopus 로고    scopus 로고
    • Feature ranking for text classifiers
    • (Ph.D thesis), Dept. of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
    • M. Makrehchi, Feature ranking for text classifiers (Ph.D thesis), Dept. of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada, 2007.
    • (2007)
    • Makrehchi, M.1
  • 30
    • 84904807402 scopus 로고    scopus 로고
    • Impact of a metric of association between two variables on performance of filters for binary data
    • Javed K., Babri H.A., Saeed M. Impact of a metric of association between two variables on performance of filters for binary data. Neurocomputing 2014, 143:248-260.
    • (2014) Neurocomputing , vol.143 , pp. 248-260
    • Javed, K.1    Babri, H.A.2    Saeed, M.3
  • 31
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: criteria of max-dependency max-relevance and min-redundancy
    • Peng H., Long F., Ding C. Feature selection based on mutual information: criteria of max-dependency max-relevance and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27(8):1226-1238.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 33
    • 58349094495 scopus 로고    scopus 로고
    • Feature selection with a measure of deviations from poisson in text categorization
    • Ogura H., Amano H., Kondo M. Feature selection with a measure of deviations from poisson in text categorization. Decis. Support Syst. 2009, 36(3):6826-6832.
    • (2009) Decis. Support Syst. , vol.36 , Issue.3 , pp. 6826-6832
    • Ogura, H.1    Amano, H.2    Kondo, M.3
  • 35
    • 80052960992 scopus 로고    scopus 로고
    • A two-stage feature selection method for text categorization
    • Meng J., Lin H., Yu Y. A two-stage feature selection method for text categorization. Comput. Math. Appl. 2011, 62(7):2793-2800.
    • (2011) Comput. Math. Appl. , vol.62 , Issue.7 , pp. 2793-2800
    • Meng, J.1    Lin, H.2    Yu, Y.3
  • 36
    • 84899668861 scopus 로고    scopus 로고
    • Text classification using genetic algorithm oriented latent semantic features
    • Uysal A.K., Gunal S. Text classification using genetic algorithm oriented latent semantic features. Expert Syst. Appl. 2014, 41(13):5938-5947.
    • (2014) Expert Syst. Appl. , vol.41 , Issue.13 , pp. 5938-5947
    • Uysal, A.K.1    Gunal, S.2
  • 41
    • 84924024447 scopus 로고    scopus 로고
    • MathWorks, MATLAB: The Language of Technical Computing
    • MathWorks, MATLAB: The Language of Technical Computing, 2010. http://www.mathworks.com/products/matlab/index.html.
    • (2010)
  • 42
    • 84924038372 scopus 로고    scopus 로고
    • Forman's version of Reuters-21578, TREC, and OHSUMED data sets
    • G. Forman, Forman's version of Reuters-21578, TREC, and OHSUMED data sets, http://www.hpl.hp.com/techreports/2002/HPL-2002-147R1.html http://www.hpl.hp.com/techreports/2002/HPL-2002-147R1.html, 2003.
    • (2003)
    • Forman, G.1
  • 44
    • 1642372340 scopus 로고    scopus 로고
    • Discriminative features for text document classification
    • Torkkola K. Discriminative features for text document classification. Pattern Anal. Appl. 2003, 301-9692.
    • (2003) Pattern Anal. Appl. , pp. 301-9692
    • Torkkola, K.1
  • 45
    • 84924039602 scopus 로고    scopus 로고
    • Quick Start Guide for Challenge Learning Object Package (CLOP), Tech. rep., Graz University of Technology and Clopinet
    • A. Saffari, I. Guyon, Quick Start Guide for Challenge Learning Object Package (CLOP), Tech. rep., Graz University of Technology and Clopinet, http://clopinet.com/clop/http://clopinet.com/clop/, 2006.
    • (2006)
    • Saffari, A.1    Guyon, I.2
  • 47
    • 0242410408 scopus 로고    scopus 로고
    • Benchmarking attribute selection techniques for discrete class data mining
    • Hall M., Holmes G. Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans. Knowl. Data Eng. 2003, 15(6):1437-1447.
    • (2003) IEEE Trans. Knowl. Data Eng. , vol.15 , Issue.6 , pp. 1437-1447
    • Hall, M.1    Holmes, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.