메뉴 건너뛰기




Volumn 31, Issue 3, 2015, Pages 128-139

Alternative mRNA transcription, processing, and translation: Insights from RNA sequencing

Author keywords

Alternative polyadenylation; Alternative splicing; Gene expression; RNA sequencing; Transcriptome; Translation

Indexed keywords

MESSENGER RNA; POLYADENYLIC ACID; RNA BINDING PROTEIN; TRANSCRIPTOME;

EID: 84923546513     PISSN: 01689525     EISSN: 13624555     Source Type: Journal    
DOI: 10.1016/j.tig.2015.01.001     Document Type: Review
Times cited : (262)

References (147)
  • 1
    • 84865757142 scopus 로고    scopus 로고
    • Landscape of transcription in human cells
    • Djebali S., et al. Landscape of transcription in human cells. Nature 2012, 489:101-108.
    • (2012) Nature , vol.489 , pp. 101-108
    • Djebali, S.1
  • 2
    • 84865708757 scopus 로고    scopus 로고
    • An expansive human regulatory lexicon encoded in transcription factor footprints
    • Neph S., et al. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 2012, 489:83-90.
    • (2012) Nature , vol.489 , pp. 83-90
    • Neph, S.1
  • 3
    • 84865800494 scopus 로고    scopus 로고
    • The long-range interaction landscape of gene promoters
    • Sanyal A., et al. The long-range interaction landscape of gene promoters. Nature 2012, 489:109-113.
    • (2012) Nature , vol.489 , pp. 109-113
    • Sanyal, A.1
  • 4
    • 84897406127 scopus 로고    scopus 로고
    • A promoter-level mammalian expression atlas
    • A promoter-level mammalian expression atlas. Nature 2014, 507:462-470. FANTOM Consortium and RIKEN PMI and CLST (DGT).
    • (2014) Nature , vol.507 , pp. 462-470
  • 5
    • 33847358805 scopus 로고    scopus 로고
    • Truncated isoform of mouse αT-catenin is testis-restricted in expression and function
    • Goossens S., et al. Truncated isoform of mouse αT-catenin is testis-restricted in expression and function. FASEB J. 2007, 21:647-655.
    • (2007) FASEB J. , vol.21 , pp. 647-655
    • Goossens, S.1
  • 6
    • 84884660617 scopus 로고    scopus 로고
    • Gene expression regulation by upstream open reading frames and human disease
    • Barbosa C., et al. Gene expression regulation by upstream open reading frames and human disease. PLoS Genet. 2013, 9:e1003529.
    • (2013) PLoS Genet. , vol.9 , pp. e1003529
    • Barbosa, C.1
  • 7
    • 66149118241 scopus 로고    scopus 로고
    • Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans
    • Calvo S.E., et al. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:7507-7512.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 7507-7512
    • Calvo, S.E.1
  • 8
    • 84868315457 scopus 로고    scopus 로고
    • Genome-wide search for novel human uORFs and N-terminal protein extensions using ribosomal footprinting
    • Fritsch C., et al. Genome-wide search for novel human uORFs and N-terminal protein extensions using ribosomal footprinting. Genome Res. 2012, 22:2208-2218.
    • (2012) Genome Res. , vol.22 , pp. 2208-2218
    • Fritsch, C.1
  • 9
    • 0345860903 scopus 로고    scopus 로고
    • Small open reading frames in 5' untranslated regions of mRNAs
    • Yamashita R., et al. Small open reading frames in 5' untranslated regions of mRNAs. C. R. Biol. 2003, 326:987-991.
    • (2003) C. R. Biol. , vol.326 , pp. 987-991
    • Yamashita, R.1
  • 10
    • 84871325792 scopus 로고    scopus 로고
    • Peptidomic discovery of short open reading frame-encoded peptides in human cells
    • Slavoff S.A., et al. Peptidomic discovery of short open reading frame-encoded peptides in human cells. Nat. Chem. Biol. 2013, 9:59-64.
    • (2013) Nat. Chem. Biol. , vol.9 , pp. 59-64
    • Slavoff, S.A.1
  • 11
    • 84883487014 scopus 로고    scopus 로고
    • Conserved regulation of cardiac calcium uptake by peptides encoded in small open reading frames
    • Magny E.G., et al. Conserved regulation of cardiac calcium uptake by peptides encoded in small open reading frames. Science 2013, 341:1116-1120.
    • (2013) Science , vol.341 , pp. 1116-1120
    • Magny, E.G.1
  • 12
    • 84885402965 scopus 로고    scopus 로고
    • Conserved peptide upstream open reading frames are associated with regulatory genes in angiosperms
    • Jorgensen R.A., Dorantes-Acosta A.E. Conserved peptide upstream open reading frames are associated with regulatory genes in angiosperms. Front. Plant Sci. 2012, 3:191.
    • (2012) Front. Plant Sci. , vol.3 , pp. 191
    • Jorgensen, R.A.1    Dorantes-Acosta, A.E.2
  • 13
    • 9144233601 scopus 로고    scopus 로고
    • Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage
    • Shiraki T., et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc. Natl. Acad. Sci. U.S.A. 2002, 100:15776-15781.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 15776-15781
    • Shiraki, T.1
  • 14
    • 84906940411 scopus 로고    scopus 로고
    • RNA sequencing: from tag-based profiling to resolving complete transcript structure
    • de Klerk E., et al. RNA sequencing: from tag-based profiling to resolving complete transcript structure. Cell. Mol. Life Sci. 2014, 71:3537-3551.
    • (2014) Cell. Mol. Life Sci. , vol.71 , pp. 3537-3551
    • de Klerk, E.1
  • 15
    • 43249113835 scopus 로고    scopus 로고
    • Deep cap analysis gene expression (CAGE): genome-wide identification of promoters, quantification of their expression, and network inference
    • 630+632
    • de Hoon M., Hayashizaki Y. Deep cap analysis gene expression (CAGE): genome-wide identification of promoters, quantification of their expression, and network inference. Biotechniques 2008, 44:627-628. 630, 632.
    • (2008) Biotechniques , vol.44 , pp. 627-628
    • de Hoon, M.1    Hayashizaki, Y.2
  • 16
    • 85052549949 scopus 로고    scopus 로고
    • Tissue-specific transcript annotation and expression profiling with complementary next-generation sequencing technologies
    • Hestand M.S., et al. Tissue-specific transcript annotation and expression profiling with complementary next-generation sequencing technologies. Nucleic Acids Res. 2010, 38:e165.
    • (2010) Nucleic Acids Res. , vol.38 , pp. e165
    • Hestand, M.S.1
  • 17
    • 65149083962 scopus 로고    scopus 로고
    • The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line
    • Suzuki H., et al. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat. Genet. 2009, 41:553-562.
    • (2009) Nat. Genet. , vol.41 , pp. 553-562
    • Suzuki, H.1
  • 18
    • 59949103704 scopus 로고    scopus 로고
    • Genome-wide detection and analysis of hippocampus core promoters using DeepCAGE
    • Valen E., et al. Genome-wide detection and analysis of hippocampus core promoters using DeepCAGE. Genome Res. 2009, 19:255-265.
    • (2009) Genome Res. , vol.19 , pp. 255-265
    • Valen, E.1
  • 19
    • 33747712023 scopus 로고    scopus 로고
    • The complexity of the mammalian transcriptome
    • Gustincich S., et al. The complexity of the mammalian transcriptome. J. Physiol. 2006, 575:321-332.
    • (2006) J. Physiol. , vol.575 , pp. 321-332
    • Gustincich, S.1
  • 20
    • 34250160256 scopus 로고    scopus 로고
    • RNA maps reveal new RNA classes and a possible function for pervasive transcription
    • Kapranov P., et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 2007, 316:1484-1488.
    • (2007) Science , vol.316 , pp. 1484-1488
    • Kapranov, P.1
  • 21
    • 84897459814 scopus 로고    scopus 로고
    • An atlas of active enhancers across human cell types and tissues
    • Andersson R., et al. An atlas of active enhancers across human cell types and tissues. Nature 2014, 507:455-461.
    • (2014) Nature , vol.507 , pp. 455-461
    • Andersson, R.1
  • 22
    • 60549115605 scopus 로고    scopus 로고
    • Post-transcriptional processing generates a diversity of 5'-modified long and short RNAs
    • Post-transcriptional processing generates a diversity of 5'-modified long and short RNAs. Nature 2009, 457:1028-1032. Affymetrix/Cold Spring Harbor Laboratory ENCODE Transcriptome Project.
    • (2009) Nature , vol.457 , pp. 1028-1032
  • 23
    • 64649087770 scopus 로고    scopus 로고
    • Identification of a cytoplasmic complex that adds a cap onto 5'-monophosphate RNA
    • Otsuka Y., et al. Identification of a cytoplasmic complex that adds a cap onto 5'-monophosphate RNA. Mol. Cell. Biol. 2009, 29:2155-2167.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 2155-2167
    • Otsuka, Y.1
  • 24
    • 78650431604 scopus 로고    scopus 로고
    • Building promoter aware transcriptional regulatory networks using siRNA perturbation and DeepCAGE
    • Vitezic M., et al. Building promoter aware transcriptional regulatory networks using siRNA perturbation and DeepCAGE. Nucleic Acids Res. 2010, 38:8141-8148.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 8141-8148
    • Vitezic, M.1
  • 25
    • 2942512933 scopus 로고    scopus 로고
    • Structure and regulated expression of mammalian RUNX genes
    • Levanon D., Groner Y. Structure and regulated expression of mammalian RUNX genes. Oncogene 2004, 23:4211-4219.
    • (2004) Oncogene , vol.23 , pp. 4211-4219
    • Levanon, D.1    Groner, Y.2
  • 26
    • 7644236012 scopus 로고    scopus 로고
    • Multiple novel transcription initiation sites for NRG1
    • Steinthorsdottir V., et al. Multiple novel transcription initiation sites for NRG1. Gene 2004, 342:97-105.
    • (2004) Gene , vol.342 , pp. 97-105
    • Steinthorsdottir, V.1
  • 27
    • 0342680080 scopus 로고    scopus 로고
    • Developmental change in TATA-box utilization during preimplantation mouse development
    • Davis W., Schultz R.M. Developmental change in TATA-box utilization during preimplantation mouse development. Dev. Biol. 2000, 218:275-283.
    • (2000) Dev. Biol. , vol.218 , pp. 275-283
    • Davis, W.1    Schultz, R.M.2
  • 28
    • 34547842483 scopus 로고    scopus 로고
    • Developmentally regulated promoter-switch transcriptionally controls Runx1 function during embryonic hematopoiesis
    • Pozner A., et al. Developmentally regulated promoter-switch transcriptionally controls Runx1 function during embryonic hematopoiesis. BMC Dev. Biol. 2007, 7:84.
    • (2007) BMC Dev. Biol. , vol.7 , pp. 84
    • Pozner, A.1
  • 29
    • 70350187040 scopus 로고    scopus 로고
    • Promoter switch: a novel mechanism causing biallelic PEG1/MEST expression in invasive breast cancer
    • Pedersen I.S., et al. Promoter switch: a novel mechanism causing biallelic PEG1/MEST expression in invasive breast cancer. Hum. Mol. Genet. 2002, 11:1449-1453.
    • (2002) Hum. Mol. Genet. , vol.11 , pp. 1449-1453
    • Pedersen, I.S.1
  • 30
    • 0029820178 scopus 로고    scopus 로고
    • Use of alternative promoters to express the aromatase cytochrome P450 (CYP19) gene in breast adipose tissues of cancer-free and breast cancer patients
    • Agarwal V.R., et al. Use of alternative promoters to express the aromatase cytochrome P450 (CYP19) gene in breast adipose tissues of cancer-free and breast cancer patients. J. Clin. Endocrinol. Metab. 1996, 81:3843-3849.
    • (1996) J. Clin. Endocrinol. Metab. , vol.81 , pp. 3843-3849
    • Agarwal, V.R.1
  • 31
    • 34548291521 scopus 로고    scopus 로고
    • Molecular cloning of a brain-specific, developmentally regulated neuregulin 1 (NRG1) isoform and identification of a functional promoter variant associated with schizophrenia
    • Tan W., et al. Molecular cloning of a brain-specific, developmentally regulated neuregulin 1 (NRG1) isoform and identification of a functional promoter variant associated with schizophrenia. J. Biol. Chem. 2007, 282:24343-24351.
    • (2007) J. Biol. Chem. , vol.282 , pp. 24343-24351
    • Tan, W.1
  • 32
    • 84891377732 scopus 로고    scopus 로고
    • Alterations to the remote control of Shh gene expression cause congenital abnormalities
    • Hill R.E., Lettice L.A. Alterations to the remote control of Shh gene expression cause congenital abnormalities. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 2013, 368:20120357.
    • (2013) Philos. Trans. R. Soc. Lond. B: Biol. Sci. , vol.368 , pp. 20120357
    • Hill, R.E.1    Lettice, L.A.2
  • 33
    • 56749098074 scopus 로고    scopus 로고
    • Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing
    • Pan Q., et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 2008, 40:1413-1415.
    • (2008) Nat. Genet. , vol.40 , pp. 1413-1415
    • Pan, Q.1
  • 34
    • 84879488128 scopus 로고    scopus 로고
    • Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene
    • Gonzalez-Porta M., et al. Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene. Genome Biol. 2013, 14:R70.
    • (2013) Genome Biol. , vol.14 , pp. R70
    • Gonzalez-Porta, M.1
  • 35
    • 84865760395 scopus 로고    scopus 로고
    • GENCODE: the reference human genome annotation for the ENCODE Project
    • Harrow J., et al. GENCODE: the reference human genome annotation for the ENCODE Project. Genome Res. 2012, 22:1760-1774.
    • (2012) Genome Res. , vol.22 , pp. 1760-1774
    • Harrow, J.1
  • 36
    • 56549105330 scopus 로고    scopus 로고
    • HITS-CLIP yields genome-wide insights into brain alternative RNA processing
    • Licatalosi D.D., et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 2008, 456:464-469.
    • (2008) Nature , vol.456 , pp. 464-469
    • Licatalosi, D.D.1
  • 37
    • 0242497663 scopus 로고    scopus 로고
    • CLIP identifies Nova-regulated RNA networks in the brain
    • Ule J., et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 2003, 302:1212-1215.
    • (2003) Science , vol.302 , pp. 1212-1215
    • Ule, J.1
  • 38
    • 84865201988 scopus 로고    scopus 로고
    • Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins
    • Wang E.T., et al. Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell 2012, 150:710-724.
    • (2012) Cell , vol.150 , pp. 710-724
    • Wang, E.T.1
  • 39
    • 79960929333 scopus 로고    scopus 로고
    • Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR
    • Lebedeva S., et al. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol. Cell 2011, 43:340-352.
    • (2011) Mol. Cell , vol.43 , pp. 340-352
    • Lebedeva, S.1
  • 40
    • 84922255144 scopus 로고    scopus 로고
    • Context-dependent control of alternative splicing by RNA-binding proteins
    • Fu X.D., Ares M. Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet. 2014, 15:689-701.
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 689-701
    • Fu, X.D.1    Ares, M.2
  • 41
    • 84881493949 scopus 로고    scopus 로고
    • Prediction of clustered RNA-binding protein motif sites in the mammalian genome
    • Zhang C., et al. Prediction of clustered RNA-binding protein motif sites in the mammalian genome. Nucleic Acids Res. 2013, 41:6793-6807.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 6793-6807
    • Zhang, C.1
  • 42
    • 82955232386 scopus 로고    scopus 로고
    • Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain
    • Ameur A., et al. Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain. Nat. Struct. Mol. Biol. 2011, 18:1435-1440.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1435-1440
    • Ameur, A.1
  • 43
    • 84880361099 scopus 로고    scopus 로고
    • RNA splicing regulates the temporal order of TNF-induced gene expression
    • Hao S., Baltimore D. RNA splicing regulates the temporal order of TNF-induced gene expression. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:11934-11939.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 11934-11939
    • Hao, S.1    Baltimore, D.2
  • 44
    • 84865777822 scopus 로고    scopus 로고
    • Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs
    • Tilgner H., et al. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res. 2012, 22:1616-1625.
    • (2012) Genome Res. , vol.22 , pp. 1616-1625
    • Tilgner, H.1
  • 45
    • 79952105381 scopus 로고    scopus 로고
    • Understanding splicing regulation through RNA splicing maps
    • Witten J.T., Ule J. Understanding splicing regulation through RNA splicing maps. Trends Genet. 2011, 27:89-97.
    • (2011) Trends Genet. , vol.27 , pp. 89-97
    • Witten, J.T.1    Ule, J.2
  • 46
    • 57649231776 scopus 로고    scopus 로고
    • Dynamic regulation of alternative splicing by silencers that modulate 5' splice site competition
    • Yu Y., et al. Dynamic regulation of alternative splicing by silencers that modulate 5' splice site competition. Cell 2008, 135:1224-1236.
    • (2008) Cell , vol.135 , pp. 1224-1236
    • Yu, Y.1
  • 47
    • 78650426199 scopus 로고    scopus 로고
    • Computational identification of tissue-specific alternative splicing elements in mouse genes from RNA-seq
    • Wen J., et al. Computational identification of tissue-specific alternative splicing elements in mouse genes from RNA-seq. Nucleic Acids Res. 2010, 38:7895-7907.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 7895-7907
    • Wen, J.1
  • 48
    • 47949120992 scopus 로고    scopus 로고
    • Conserved RNA secondary structures promote alternative splicing
    • Shepard P.J., Hertel K.J. Conserved RNA secondary structures promote alternative splicing. RNA 2008, 14:1463-1469.
    • (2008) RNA , vol.14 , pp. 1463-1469
    • Shepard, P.J.1    Hertel, K.J.2
  • 49
    • 84055217993 scopus 로고    scopus 로고
    • Evidence for widespread association of mammalian splicing and conserved long-range RNA structures
    • Pervouchine D.D., et al. Evidence for widespread association of mammalian splicing and conserved long-range RNA structures. RNA 2012, 18:1-15.
    • (2012) RNA , vol.18 , pp. 1-15
    • Pervouchine, D.D.1
  • 50
    • 67249165478 scopus 로고    scopus 로고
    • The protein factors MBNL1 and U2AF65 bind alternative RNA structures to regulate splicing
    • Warf M.B., et al. The protein factors MBNL1 and U2AF65 bind alternative RNA structures to regulate splicing. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:9203-9208.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 9203-9208
    • Warf, M.B.1
  • 51
    • 34548718165 scopus 로고    scopus 로고
    • Muscleblind-like 1 interacts with RNA hairpins in splicing target and pathogenic RNAs
    • Yuan Y., et al. Muscleblind-like 1 interacts with RNA hairpins in splicing target and pathogenic RNAs. Nucleic Acids Res. 2007, 35:5474-5486.
    • (2007) Nucleic Acids Res. , vol.35 , pp. 5474-5486
    • Yuan, Y.1
  • 52
    • 77956306662 scopus 로고    scopus 로고
    • Genome-wide measurement of RNA secondary structure in yeast
    • Kertesz M., et al. Genome-wide measurement of RNA secondary structure in yeast. Nature 2010, 467:103-107.
    • (2010) Nature , vol.467 , pp. 103-107
    • Kertesz, M.1
  • 53
    • 79960571755 scopus 로고    scopus 로고
    • Multiplexed RNA structure characterization with selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-seq)
    • Lucks J.B., et al. Multiplexed RNA structure characterization with selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-seq). Proc. Natl. Acad. Sci. U.S.A. 2011, 108:11063-11068.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 11063-11068
    • Lucks, J.B.1
  • 54
    • 84893358533 scopus 로고    scopus 로고
    • Landscape and variation of RNA secondary structure across the human transcriptome
    • Wan Y., et al. Landscape and variation of RNA secondary structure across the human transcriptome. Nature 2014, 505:706-709.
    • (2014) Nature , vol.505 , pp. 706-709
    • Wan, Y.1
  • 55
    • 84893427735 scopus 로고    scopus 로고
    • In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features
    • Ding Y., et al. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 2014, 505:696-700.
    • (2014) Nature , vol.505 , pp. 696-700
    • Ding, Y.1
  • 56
    • 84899084487 scopus 로고    scopus 로고
    • Alternative splicing regulates vesicular trafficking genes in cardiomyocytes during postnatal heart development
    • Giudice J., et al. Alternative splicing regulates vesicular trafficking genes in cardiomyocytes during postnatal heart development. Nat. Commun. 2014, 5:3603.
    • (2014) Nat. Commun. , vol.5 , pp. 3603
    • Giudice, J.1
  • 57
    • 84874395788 scopus 로고    scopus 로고
    • Rbfox3-regulated alternative splicing of Numb promotes neuronal differentiation during development
    • Kim K.K., et al. Rbfox3-regulated alternative splicing of Numb promotes neuronal differentiation during development. J. Cell Biol. 2013, 200:443-458.
    • (2013) J. Cell Biol. , vol.200 , pp. 443-458
    • Kim, K.K.1
  • 58
    • 84899009020 scopus 로고    scopus 로고
    • A dynamic alternative splicing program regulates gene expression during terminal erythropoiesis
    • Pimentel H., et al. A dynamic alternative splicing program regulates gene expression during terminal erythropoiesis. Nucleic Acids Res. 2014, 42:4031-4042.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 4031-4042
    • Pimentel, H.1
  • 59
    • 79961153567 scopus 로고    scopus 로고
    • Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats
    • Gracheva E.O., et al. Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats. Nature 2011, 476:88-91.
    • (2011) Nature , vol.476 , pp. 88-91
    • Gracheva, E.O.1
  • 60
    • 84862992463 scopus 로고    scopus 로고
    • Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks
    • Buljan M., et al. Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks. Mol. Cell 2012, 46:871-883.
    • (2012) Mol. Cell , vol.46 , pp. 871-883
    • Buljan, M.1
  • 61
    • 84872493355 scopus 로고    scopus 로고
    • RNA-seq and human complex diseases: recent accomplishments and future perspectives
    • Costa V., et al. RNA-seq and human complex diseases: recent accomplishments and future perspectives. Eur. J. Hum. Genet. 2013, 21:134-142.
    • (2013) Eur. J. Hum. Genet. , vol.21 , pp. 134-142
    • Costa, V.1
  • 62
    • 77957291654 scopus 로고    scopus 로고
    • Alternative splicing and muscular dystrophy
    • Pistoni M., et al. Alternative splicing and muscular dystrophy. RNA Biol. 2010, 7:441-452.
    • (2010) RNA Biol. , vol.7 , pp. 441-452
    • Pistoni, M.1
  • 63
    • 38949111543 scopus 로고    scopus 로고
    • 3' End mRNA processing: molecular mechanisms and implications for health and disease
    • Danckwardt S., et al. 3' End mRNA processing: molecular mechanisms and implications for health and disease. EMBO J. 2008, 27:482-498.
    • (2008) EMBO J. , vol.27 , pp. 482-498
    • Danckwardt, S.1
  • 64
    • 69549135202 scopus 로고    scopus 로고
    • To localize or not to localize: mRNA fate is in 3'UTR ends
    • Andreassi C., Riccio A. To localize or not to localize: mRNA fate is in 3'UTR ends. Trends Cell Biol. 2009, 19:465-474.
    • (2009) Trends Cell Biol. , vol.19 , pp. 465-474
    • Andreassi, C.1    Riccio, A.2
  • 65
    • 77953629046 scopus 로고    scopus 로고
    • Regulation of mRNA translation and stability by microRNAs
    • Fabian M.R., et al. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 2010, 79:351-379.
    • (2010) Annu. Rev. Biochem. , vol.79 , pp. 351-379
    • Fabian, M.R.1
  • 66
    • 84861903786 scopus 로고    scopus 로고
    • A quantitative atlas of polyadenylation in five mammals
    • Derti A., et al. A quantitative atlas of polyadenylation in five mammals. Genome Res. 2012, 22:1173-1183.
    • (2012) Genome Res. , vol.22 , pp. 1173-1183
    • Derti, A.1
  • 67
    • 78649910014 scopus 로고    scopus 로고
    • Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation
    • Ozsolak F., et al. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 2010, 143:1018-1029.
    • (2010) Cell , vol.143 , pp. 1018-1029
    • Ozsolak, F.1
  • 68
    • 79953014914 scopus 로고    scopus 로고
    • Complex and dynamic landscape of RNA polyadenylation revealed by PAS-seq
    • Shepard P.J., et al. Complex and dynamic landscape of RNA polyadenylation revealed by PAS-seq. RNA 2011, 17:761-772.
    • (2011) RNA , vol.17 , pp. 761-772
    • Shepard, P.J.1
  • 69
    • 84869228761 scopus 로고    scopus 로고
    • Transcriptome-wide analyses of CstF64-RNA interactions in global regulation of mRNA alternative polyadenylation
    • Yao C., et al. Transcriptome-wide analyses of CstF64-RNA interactions in global regulation of mRNA alternative polyadenylation. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:18773-18778.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 18773-18778
    • Yao, C.1
  • 70
    • 84867558164 scopus 로고    scopus 로고
    • Poly(A) binding protein nuclear 1 levels affect alternative polyadenylation
    • de Klerk E., et al. Poly(A) binding protein nuclear 1 levels affect alternative polyadenylation. Nucleic Acids Res. 2012, 40:9089-9101.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 9089-9101
    • de Klerk, E.1
  • 71
    • 80053413109 scopus 로고    scopus 로고
    • Transcriptional activity regulates alternative cleavage and polyadenylation
    • Ji Z., et al. Transcriptional activity regulates alternative cleavage and polyadenylation. Mol. Syst. Biol. 2011, 7:534.
    • (2011) Mol. Syst. Biol. , vol.7 , pp. 534
    • Ji, Z.1
  • 72
    • 84883611839 scopus 로고    scopus 로고
    • Distinct polyadenylation landscapes of diverse human tissues revealed by a modified PA-seq strategy
    • Ni T., et al. Distinct polyadenylation landscapes of diverse human tissues revealed by a modified PA-seq strategy. BMC Genomics 2013, 14:615.
    • (2013) BMC Genomics , vol.14 , pp. 615
    • Ni, T.1
  • 73
    • 77958459763 scopus 로고    scopus 로고
    • Upf1 senses 3'UTR length to potentiate mRNA decay
    • Hogg J.R., Goff S.P. Upf1 senses 3'UTR length to potentiate mRNA decay. Cell 2010, 143:379-389.
    • (2010) Cell , vol.143 , pp. 379-389
    • Hogg, J.R.1    Goff, S.P.2
  • 74
    • 84880427394 scopus 로고    scopus 로고
    • A compendium of RNA-binding motifs for decoding gene regulation
    • Ray D., et al. A compendium of RNA-binding motifs for decoding gene regulation. Nature 2013, 499:172-177.
    • (2013) Nature , vol.499 , pp. 172-177
    • Ray, D.1
  • 75
    • 84905858545 scopus 로고    scopus 로고
    • Alternative polyadenylation diversifies post-transcriptional regulation by selective RNA-protein interactions
    • Gupta I., et al. Alternative polyadenylation diversifies post-transcriptional regulation by selective RNA-protein interactions. Mol. Syst. Biol. 2014, 10:719.
    • (2014) Mol. Syst. Biol. , vol.10 , pp. 719
    • Gupta, I.1
  • 76
    • 84890494960 scopus 로고    scopus 로고
    • 3' UTR-isoform choice has limited influence on the stability and translational efficiency of most mRNAs in mouse fibroblasts
    • Spies N., et al. 3' UTR-isoform choice has limited influence on the stability and translational efficiency of most mRNAs in mouse fibroblasts. Genome Res. 2013, 23:2078-2090.
    • (2013) Genome Res. , vol.23 , pp. 2078-2090
    • Spies, N.1
  • 77
    • 84860317107 scopus 로고    scopus 로고
    • The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites
    • Jenal M., et al. The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell 2012, 149:538-553.
    • (2012) Cell , vol.149 , pp. 538-553
    • Jenal, M.1
  • 78
    • 84863093884 scopus 로고    scopus 로고
    • Genome-wide analysis of pre-mRNA 3' end processing reveals a decisive role of human cleavage factor I in the regulation of 3' UTR length
    • Martin G., et al. Genome-wide analysis of pre-mRNA 3' end processing reveals a decisive role of human cleavage factor I in the regulation of 3' UTR length. Cell Rep. 2012, 1:753-763.
    • (2012) Cell Rep. , vol.1 , pp. 753-763
    • Martin, G.1
  • 79
    • 78650972252 scopus 로고    scopus 로고
    • Formation, regulation and evolution of Caenorhabditis elegans 3'UTRs
    • Jan C.H., et al. Formation, regulation and evolution of Caenorhabditis elegans 3'UTRs. Nature 2011, 469:97-101.
    • (2011) Nature , vol.469 , pp. 97-101
    • Jan, C.H.1
  • 80
    • 84861179159 scopus 로고    scopus 로고
    • Global patterns of tissue-specific alternative polyadenylation in Drosophila
    • Smibert P., et al. Global patterns of tissue-specific alternative polyadenylation in Drosophila. Cell Rep. 2012, 1:277-289.
    • (2012) Cell Rep. , vol.1 , pp. 277-289
    • Smibert, P.1
  • 81
    • 84867163995 scopus 로고    scopus 로고
    • Extensive alternative polyadenylation during zebrafish development
    • Ulitsky I., et al. Extensive alternative polyadenylation during zebrafish development. Genome Res. 2012, 22:2054-2066.
    • (2012) Genome Res. , vol.22 , pp. 2054-2066
    • Ulitsky, I.1
  • 82
    • 84879921675 scopus 로고    scopus 로고
    • Genome-wide identification and predictive modeling of tissue-specific alternative polyadenylation
    • Hafez D., et al. Genome-wide identification and predictive modeling of tissue-specific alternative polyadenylation. Bioinformatics 2013, 29:i108-i116.
    • (2013) Bioinformatics , vol.29 , pp. i108-i116
    • Hafez, D.1
  • 83
    • 77951977370 scopus 로고    scopus 로고
    • A functional human poly(A) site requires only a potent DSE and an A-rich upstream sequence
    • Nunes N.M., et al. A functional human poly(A) site requires only a potent DSE and an A-rich upstream sequence. EMBO J. 2010, 29:1523-1536.
    • (2010) EMBO J. , vol.29 , pp. 1523-1536
    • Nunes, N.M.1
  • 84
    • 13744254695 scopus 로고    scopus 로고
    • A large-scale analysis of mRNA polyadenylation of human and mouse genes
    • Tian B., et al. A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res. 2005, 33:201-212.
    • (2005) Nucleic Acids Res. , vol.33 , pp. 201-212
    • Tian, B.1
  • 85
    • 15544384891 scopus 로고    scopus 로고
    • Computational analysis of 3'-ends of ESTs shows four classes of alternative polyadenylation in human, mouse, and rat
    • Yan J., Marr T.G. Computational analysis of 3'-ends of ESTs shows four classes of alternative polyadenylation in human, mouse, and rat. Genome Res. 2005, 15:369-375.
    • (2005) Genome Res. , vol.15 , pp. 369-375
    • Yan, J.1    Marr, T.G.2
  • 86
    • 84877111454 scopus 로고    scopus 로고
    • Widespread and extensive lengthening of 3' UTRs in the mammalian brain
    • Miura P., et al. Widespread and extensive lengthening of 3' UTRs in the mammalian brain. Genome Res. 2013, 23:812-825.
    • (2013) Genome Res. , vol.23 , pp. 812-825
    • Miura, P.1
  • 87
    • 84873405541 scopus 로고    scopus 로고
    • Analysis of alternative cleavage and polyadenylation by 3' region extraction and deep sequencing
    • Hoque M., et al. Analysis of alternative cleavage and polyadenylation by 3' region extraction and deep sequencing. Nat. Methods 2013, 10:133-139.
    • (2013) Nat. Methods , vol.10 , pp. 133-139
    • Hoque, M.1
  • 88
    • 84867186197 scopus 로고    scopus 로고
    • Dynamic landscape of tandem 3' UTRs during zebrafish development
    • Li Y., et al. Dynamic landscape of tandem 3' UTRs during zebrafish development. Genome Res. 2012, 22:1899-1906.
    • (2012) Genome Res. , vol.22 , pp. 1899-1906
    • Li, Y.1
  • 89
    • 77954847055 scopus 로고    scopus 로고
    • The landscape of C. elegans 3'UTRs
    • Mangone M., et al. The landscape of C. elegans 3'UTRs. Science 2010, 329:432-435.
    • (2010) Science , vol.329 , pp. 432-435
    • Mangone, M.1
  • 90
    • 79955554179 scopus 로고    scopus 로고
    • Differential genome-wide profiling of tandem 3' UTRs among human breast cancer and normal cells by high-throughput sequencing
    • Fu Y., et al. Differential genome-wide profiling of tandem 3' UTRs among human breast cancer and normal cells by high-throughput sequencing. Genome Res. 2011, 21:741-747.
    • (2011) Genome Res. , vol.21 , pp. 741-747
    • Fu, Y.1
  • 91
    • 84866910243 scopus 로고    scopus 로고
    • An in-depth map of polyadenylation sites in cancer
    • Lin Y., et al. An in-depth map of polyadenylation sites in cancer. Nucleic Acids Res. 2012, 40:8460-8471.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 8460-8471
    • Lin, Y.1
  • 92
    • 68749113985 scopus 로고    scopus 로고
    • Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells
    • Mayr C., Bartel D.P. Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 2009, 138:673-684.
    • (2009) Cell , vol.138 , pp. 673-684
    • Mayr, C.1    Bartel, D.P.2
  • 93
    • 84856710408 scopus 로고    scopus 로고
    • Shortening of 3'UTRs correlates with poor prognosis in breast and lung cancer
    • Lembo A., et al. Shortening of 3'UTRs correlates with poor prognosis in breast and lung cancer. PLoS ONE 2012, 7:e31129.
    • (2012) PLoS ONE , vol.7 , pp. e31129
    • Lembo, A.1
  • 94
    • 84866945388 scopus 로고    scopus 로고
    • Alternative cleavage and polyadenylation during colorectal cancer development
    • Morris A.R., et al. Alternative cleavage and polyadenylation during colorectal cancer development. Clin. Cancer Res. 2012, 18:5256-5266.
    • (2012) Clin. Cancer Res. , vol.18 , pp. 5256-5266
    • Morris, A.R.1
  • 95
    • 84922319971 scopus 로고    scopus 로고
    • Loss of MBNL Leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease
    • Batra R., et al. Loss of MBNL Leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease. Mol. Cell 2014, 56:311-322.
    • (2014) Mol. Cell , vol.56 , pp. 311-322
    • Batra, R.1
  • 96
    • 46049107404 scopus 로고    scopus 로고
    • Alternative translation start sites and hidden coding potential of eukaryotic mRNAs
    • Kochetov A.V. Alternative translation start sites and hidden coding potential of eukaryotic mRNAs. Bioessays 2008, 30:683-691.
    • (2008) Bioessays , vol.30 , pp. 683-691
    • Kochetov, A.V.1
  • 97
    • 84864453787 scopus 로고    scopus 로고
    • The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments
    • Ingolia N.T., et al. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat. Protoc. 2012, 7:1534-1550.
    • (2012) Nat. Protoc. , vol.7 , pp. 1534-1550
    • Ingolia, N.T.1
  • 98
    • 81055155799 scopus 로고    scopus 로고
    • Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes
    • Ingolia N.T., et al. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 2011, 147:789-802.
    • (2011) Cell , vol.147 , pp. 789-802
    • Ingolia, N.T.1
  • 99
    • 84866267681 scopus 로고    scopus 로고
    • Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution
    • Lee S., et al. Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E2424-E2432.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. E2424-E2432
    • Lee, S.1
  • 100
    • 84888068367 scopus 로고    scopus 로고
    • Current status and advances in quantitative proteomic mass spectrometry
    • Wasinger V.C., et al. Current status and advances in quantitative proteomic mass spectrometry. Int. J. Proteomics 2013, 2013:180605.
    • (2013) Int. J. Proteomics , vol.2013 , pp. 180605
    • Wasinger, V.C.1
  • 101
    • 84879936964 scopus 로고    scopus 로고
    • Deep proteome coverage based on ribosome profiling aids mass spectrometry-based protein and peptide discovery and provides evidence of alternative translation products and near-cognate translation initiation events
    • Menschaert G., et al. Deep proteome coverage based on ribosome profiling aids mass spectrometry-based protein and peptide discovery and provides evidence of alternative translation products and near-cognate translation initiation events. Mol. Cell. Proteomics 2013, 12:1780-1790.
    • (2013) Mol. Cell. Proteomics , vol.12 , pp. 1780-1790
    • Menschaert, G.1
  • 102
    • 27144555357 scopus 로고    scopus 로고
    • Regulation of translation via mRNA structure in prokaryotes and eukaryotes
    • Kozak M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 2005, 361:13-37.
    • (2005) Gene , vol.361 , pp. 13-37
    • Kozak, M.1
  • 103
    • 84868324214 scopus 로고    scopus 로고
    • Observation of dually decoded regions of the human genome using ribosome profiling data
    • Michel A.M., et al. Observation of dually decoded regions of the human genome using ribosome profiling data. Genome Res. 2012, 22:2219-2229.
    • (2012) Genome Res. , vol.22 , pp. 2219-2229
    • Michel, A.M.1
  • 104
    • 71149108056 scopus 로고    scopus 로고
    • Correlation of mRNA and protein in complex biological samples
    • Maier T., et al. Correlation of mRNA and protein in complex biological samples. FEBS Lett. 2009, 583:3966-3973.
    • (2009) FEBS Lett. , vol.583 , pp. 3966-3973
    • Maier, T.1
  • 105
    • 78650642557 scopus 로고    scopus 로고
    • Defining the transcriptome and proteome in three functionally different human cell lines
    • Lundberg E., et al. Defining the transcriptome and proteome in three functionally different human cell lines. Mol. Syst. Biol. 2010, 6:450.
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 450
    • Lundberg, E.1
  • 106
    • 79956322553 scopus 로고    scopus 로고
    • Global quantification of mammalian gene expression control
    • Schwanhausser B., et al. Global quantification of mammalian gene expression control. Nature 2011, 473:337-342.
    • (2011) Nature , vol.473 , pp. 337-342
    • Schwanhausser, B.1
  • 107
    • 20144368638 scopus 로고    scopus 로고
    • Integrated genomic and proteomic analyses of gene expression in mammalian cells
    • Tian Q., et al. Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol. Cell. Proteomics 2004, 3:960-969.
    • (2004) Mol. Cell. Proteomics , vol.3 , pp. 960-969
    • Tian, Q.1
  • 108
    • 77956261738 scopus 로고    scopus 로고
    • Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line
    • Vogel C., et al. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol. Syst. Biol. 2010, 6:400.
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 400
    • Vogel, C.1
  • 109
    • 62549134121 scopus 로고    scopus 로고
    • Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling
    • Ingolia N.T., et al. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 2009, 324:218-223.
    • (2009) Science , vol.324 , pp. 218-223
    • Ingolia, N.T.1
  • 110
    • 84904514448 scopus 로고    scopus 로고
    • System wide analyses have underestimated protein abundances and the importance of transcription in mammals
    • Li J.J., et al. System wide analyses have underestimated protein abundances and the importance of transcription in mammals. PeerJ 2014, 2:e270.
    • (2014) PeerJ , vol.2 , pp. e270
    • Li, J.J.1
  • 111
    • 84877285213 scopus 로고    scopus 로고
    • Translating mRNAs strongly correlate to proteins in a multivariate manner and their translation ratios are phenotype specific
    • Wang T., et al. Translating mRNAs strongly correlate to proteins in a multivariate manner and their translation ratios are phenotype specific. Nucleic Acids Res. 2013, 41:4743-4754.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 4743-4754
    • Wang, T.1
  • 112
    • 84861798070 scopus 로고    scopus 로고
    • Widespread uncoupling between transcriptome and translatome variations after a stimulus in mammalian cells
    • Tebaldi T., et al. Widespread uncoupling between transcriptome and translatome variations after a stimulus in mammalian cells. BMC Genomics 2012, 13:220.
    • (2012) BMC Genomics , vol.13 , pp. 220
    • Tebaldi, T.1
  • 113
    • 20744451863 scopus 로고    scopus 로고
    • A subset of nuclear receptor coregulators act as coupling proteins during synthesis and maturation of RNA transcripts
    • Auboeuf D., et al. A subset of nuclear receptor coregulators act as coupling proteins during synthesis and maturation of RNA transcripts. Mol. Cell. Biol. 2005, 25:5307-5316.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 5307-5316
    • Auboeuf, D.1
  • 114
    • 84894318075 scopus 로고    scopus 로고
    • Coupling mRNA processing with transcription in time and space
    • Bentley D.L. Coupling mRNA processing with transcription in time and space. Nat. Rev. Genet. 2014, 15:163-175.
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 163-175
    • Bentley, D.L.1
  • 115
    • 84867160564 scopus 로고    scopus 로고
    • The RNA polymerase II CTD coordinates transcription and RNA processing
    • Hsin J.P., Manley J.L. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev. 2012, 26:2119-2137.
    • (2012) Genes Dev. , vol.26 , pp. 2119-2137
    • Hsin, J.P.1    Manley, J.L.2
  • 116
    • 84867137051 scopus 로고    scopus 로고
    • Chromatin and epigenetic regulation of pre-mRNA processing
    • Brown S.J., et al. Chromatin and epigenetic regulation of pre-mRNA processing. Hum. Mol. Genet. 2012, 21:R90-R96.
    • (2012) Hum. Mol. Genet. , vol.21 , pp. R90-R96
    • Brown, S.J.1
  • 117
    • 84872373404 scopus 로고    scopus 로고
    • Transcriptional elongation and alternative splicing
    • Dujardin G., et al. Transcriptional elongation and alternative splicing. Biochim. Biophys. Acta 2013, 1829:134-140.
    • (2013) Biochim. Biophys. Acta , vol.1829 , pp. 134-140
    • Dujardin, G.1
  • 118
    • 84872269907 scopus 로고    scopus 로고
    • Kinetic competition between RNA polymerase II and Sen1-dependent transcription termination
    • Hazelbaker D.Z., et al. Kinetic competition between RNA polymerase II and Sen1-dependent transcription termination. Mol. Cell 2013, 49:55-66.
    • (2013) Mol. Cell , vol.49 , pp. 55-66
    • Hazelbaker, D.Z.1
  • 119
    • 79958859723 scopus 로고    scopus 로고
    • RNA polymerase II kinetics in polo polyadenylation signal selection
    • Pinto P.A., et al. RNA polymerase II kinetics in polo polyadenylation signal selection. EMBO J. 2011, 30:2431-2444.
    • (2011) EMBO J. , vol.30 , pp. 2431-2444
    • Pinto, P.A.1
  • 120
    • 84867070903 scopus 로고    scopus 로고
    • Heterogeneous nuclear ribonucleoprotein L-like (hnRNPLL) and elongation factor, RNA polymerase II, 2 (ELL2) are regulators of mRNA processing in plasma cells
    • Benson M.J., et al. Heterogeneous nuclear ribonucleoprotein L-like (hnRNPLL) and elongation factor, RNA polymerase II, 2 (ELL2) are regulators of mRNA processing in plasma cells. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:16252-16257.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 16252-16257
    • Benson, M.J.1
  • 121
    • 61449172037 scopus 로고    scopus 로고
    • Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
    • Huang D.W., et al. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4:44-57.
    • (2009) Nat. Protoc. , vol.4 , pp. 44-57
    • Huang, D.W.1
  • 122
    • 84862777556 scopus 로고    scopus 로고
    • Mediator complex regulates alternative mRNA processing via the MED23 subunit
    • Huang Y., et al. Mediator complex regulates alternative mRNA processing via the MED23 subunit. Mol. Cell 2012, 45:459-469.
    • (2012) Mol. Cell , vol.45 , pp. 459-469
    • Huang, Y.1
  • 123
    • 79951484797 scopus 로고    scopus 로고
    • Transcriptional activators enhance polyadenylation of mRNA precursors
    • Nagaike T., et al. Transcriptional activators enhance polyadenylation of mRNA precursors. Mol. Cell 2011, 41:409-418.
    • (2011) Mol. Cell , vol.41 , pp. 409-418
    • Nagaike, T.1
  • 124
    • 84857751341 scopus 로고    scopus 로고
    • An active role for splicing in 3'-end formation
    • Martinson H.G. An active role for splicing in 3'-end formation. Wiley Interdiscip. Rev. RNA 2011, 2:459-470.
    • (2011) Wiley Interdiscip. Rev. RNA , vol.2 , pp. 459-470
    • Martinson, H.G.1
  • 125
    • 0028895417 scopus 로고
    • Exon recognition in vertebrate splicing
    • Berget S.M. Exon recognition in vertebrate splicing. J. Biol. Chem. 1995, 270:2411-2414.
    • (1995) J. Biol. Chem. , vol.270 , pp. 2411-2414
    • Berget, S.M.1
  • 126
    • 59649122202 scopus 로고    scopus 로고
    • Molecular architecture of the human pre-mRNA 3' processing complex
    • Shi Y., et al. Molecular architecture of the human pre-mRNA 3' processing complex. Mol. Cell 2009, 33:365-376.
    • (2009) Mol. Cell , vol.33 , pp. 365-376
    • Shi, Y.1
  • 127
    • 84923615631 scopus 로고    scopus 로고
    • TRAP150 activates splicing in composite terminal exons
    • Published online October 17, 2014.
    • Lee K.M., Tarn W.Y. TRAP150 activates splicing in composite terminal exons. Nucleic Acids Res. 2014, Published online October 17, 2014. http://dx.doi.org/10.1093/nar/gku963.
    • (2014) Nucleic Acids Res.
    • Lee, K.M.1    Tarn, W.Y.2
  • 128
    • 78649714014 scopus 로고    scopus 로고
    • Analysis and design of RNA sequencing experiments for identifying isoform regulation
    • Katz Y., et al. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat. Methods 2010, 7:1009-1015.
    • (2010) Nat. Methods , vol.7 , pp. 1009-1015
    • Katz, Y.1
  • 129
    • 78649847070 scopus 로고    scopus 로고
    • U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation
    • Kaida D., et al. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature 2010, 468:664-668.
    • (2010) Nature , vol.468 , pp. 664-668
    • Kaida, D.1
  • 130
    • 33846870354 scopus 로고    scopus 로고
    • Widespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing
    • Tian B., et al. Widespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing. Genome Res. 2007, 17:156-165.
    • (2007) Genome Res. , vol.17 , pp. 156-165
    • Tian, B.1
  • 131
    • 84880809596 scopus 로고    scopus 로고
    • The conserved intronic cleavage and polyadenylation site of CstF-77 gene imparts control of 3' end processing activity through feedback autoregulation and by U1 snRNP
    • Luo W., et al. The conserved intronic cleavage and polyadenylation site of CstF-77 gene imparts control of 3' end processing activity through feedback autoregulation and by U1 snRNP. PLoS Genet. 2013, 9:e1003613.
    • (2013) PLoS Genet. , vol.9 , pp. e1003613
    • Luo, W.1
  • 132
    • 84874732911 scopus 로고    scopus 로고
    • CPEB1 coordinates alternative 3'-UTR formation with translational regulation
    • Bava F.A., et al. CPEB1 coordinates alternative 3'-UTR formation with translational regulation. Nature 2013, 495:121-125.
    • (2013) Nature , vol.495 , pp. 121-125
    • Bava, F.A.1
  • 133
    • 84890286068 scopus 로고    scopus 로고
    • Characterization of the human ESC transcriptome by hybrid sequencing
    • Au K.F., et al. Characterization of the human ESC transcriptome by hybrid sequencing. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E4821-E4830.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. E4821-E4830
    • Au, K.F.1
  • 134
    • 84887412533 scopus 로고    scopus 로고
    • A single-molecule long-read survey of the human transcriptome
    • Sharon D., et al. A single-molecule long-read survey of the human transcriptome. Nat. Biotechnol. 2013, 31:1009-1014.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 1009-1014
    • Sharon, D.1
  • 135
    • 2442694425 scopus 로고    scopus 로고
    • Transcriptome and genome conservation of alternative splicing events in humans and mice
    • Sugnet C.W., et al. Transcriptome and genome conservation of alternative splicing events in humans and mice. Pac. Symp. Biocomput. 2004, 2004:66-77.
    • (2004) Pac. Symp. Biocomput. , vol.2004 , pp. 66-77
    • Sugnet, C.W.1
  • 136
    • 1642473041 scopus 로고    scopus 로고
    • How prevalent is functional alternative splicing in the human genome?
    • Sorek R., et al. How prevalent is functional alternative splicing in the human genome?. Trends Genet. 2004, 20:68-71.
    • (2004) Trends Genet. , vol.20 , pp. 68-71
    • Sorek, R.1
  • 137
    • 2542603045 scopus 로고    scopus 로고
    • Evidence for a subpopulation of conserved alternative splicing events under selection pressure for protein reading frame preservation
    • Resch A., et al. Evidence for a subpopulation of conserved alternative splicing events under selection pressure for protein reading frame preservation. Nucleic Acids Res. 2004, 32:1261-1269.
    • (2004) Nucleic Acids Res. , vol.32 , pp. 1261-1269
    • Resch, A.1
  • 138
    • 1942534661 scopus 로고    scopus 로고
    • Minimal conditions for exonization of intronic sequences: 5' splice site formation in Alu exons
    • Sorek R., et al. Minimal conditions for exonization of intronic sequences: 5' splice site formation in Alu exons. Mol. Cell 2014, 14:221-231.
    • (2014) Mol. Cell , vol.14 , pp. 221-231
    • Sorek, R.1
  • 139
    • 46249106990 scopus 로고    scopus 로고
    • Mapping and quantifying mammalian transcriptomes by RNA-seq
    • Mortazavi A., et al. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods 2008, 5:621-628.
    • (2008) Nat. Methods , vol.5 , pp. 621-628
    • Mortazavi, A.1
  • 140
    • 33646950851 scopus 로고    scopus 로고
    • Biased alternative polyadenylation in human tissues
    • Zhang H., et al. Biased alternative polyadenylation in human tissues. Genome Biol. 2005, 6:R100.
    • (2005) Genome Biol. , vol.6 , pp. R100
    • Zhang, H.1
  • 141
    • 66049104920 scopus 로고    scopus 로고
    • Progressive lengthening of 3' untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development
    • Ji Z., et al. Progressive lengthening of 3' untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:7028-7033.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 7028-7033
    • Ji, Z.1
  • 142
    • 46249092601 scopus 로고    scopus 로고
    • Proliferating cells express mRNAs with shortened 3' untranslated regions and fewer microRNA target sites
    • Sandberg R., et al. Proliferating cells express mRNAs with shortened 3' untranslated regions and fewer microRNA target sites. Science 2008, 320:1643-1647.
    • (2008) Science , vol.320 , pp. 1643-1647
    • Sandberg, R.1
  • 143
    • 77949538391 scopus 로고    scopus 로고
    • Reprogramming of 3'UTR untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types
    • Ji Z., Tian B. Reprogramming of 3'UTR untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLoS ONE 2009, 4:e8419.
    • (2009) PLoS ONE , vol.4 , pp. e8419
    • Ji, Z.1    Tian, B.2
  • 144
    • 84977874899 scopus 로고    scopus 로고
    • The regulatory potential of upstream open reading frames in eukaryotic gene expression
    • Wethmar K. The regulatory potential of upstream open reading frames in eukaryotic gene expression. Wiley Interdiscip. Rev. RNA 2014, 5:765-778.
    • (2014) Wiley Interdiscip. Rev. RNA , vol.5 , pp. 765-778
    • Wethmar, K.1
  • 145
    • 84881529829 scopus 로고    scopus 로고
    • Direct detection of alternative open reading frames translation products in human significantly expands the proteome
    • Vanderperre B., et al. Direct detection of alternative open reading frames translation products in human significantly expands the proteome. PLoS ONE 2013, 8:e70698.
    • (2013) PLoS ONE , vol.8 , pp. e70698
    • Vanderperre, B.1
  • 147
    • 78751604289 scopus 로고    scopus 로고
    • The distinction between recoding and codon reassignment
    • Atkins J.F., Baranov P.V. The distinction between recoding and codon reassignment. Genetics 2010, 185:1535-1536.
    • (2010) Genetics , vol.185 , pp. 1535-1536
    • Atkins, J.F.1    Baranov, P.V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.