-
1
-
-
0000501967
-
Molecular and cellular biology of cardiac hypertrophy and failure
-
In: Chien KR, editor. Philadelphia, PA: Saunders
-
Chien KR, Grace AA, Hunter JJ. Molecular and cellular biology of cardiac hypertrophy and failure. In: Chien KR, editor. Molecular basis of cardiovascular disease. Philadelphia, PA: Saunders; 1999. pp. 211-50.
-
(1999)
Molecular basis of cardiovascular disease
, pp. 211-250
-
-
Chien, K.R.1
Grace, A.A.2
Hunter, J.J.3
-
2
-
-
33745185351
-
Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction
-
Perrino C, Naga Prasad SV, Mao L, et al. Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction. J Clin Invest. 2006; 116: 1547-60.
-
(2006)
J Clin Invest
, vol.116
, pp. 1547-1560
-
-
Perrino, C.1
Naga Prasad, S.V.2
Mao, L.3
-
3
-
-
84873868258
-
Signaling effectors underlying pathologic growth and remodeling of the heart
-
van Berlo JH, Maillet M, Molkentin JD. Signaling effectors underlying pathologic growth and remodeling of the heart. J Clin Invest. 2013; 123: 37-45.
-
(2013)
J Clin Invest
, vol.123
, pp. 37-45
-
-
van Berlo, J.H.1
Maillet, M.2
Molkentin, J.D.3
-
4
-
-
0031028423
-
Angiotensin II and serum differentially regulate expression of cyclins, activity of cyclin-dependent kinases, and phosphorylation of retinoblastoma gene product in neonatal cardiac myocytes
-
Sadoshima J, Aoki H, Izumo S. Angiotensin II and serum differentially regulate expression of cyclins, activity of cyclin-dependent kinases, and phosphorylation of retinoblastoma gene product in neonatal cardiac myocytes. Circ Res. 1997; 80: 228-41.
-
(1997)
Circ Res
, vol.80
, pp. 228-241
-
-
Sadoshima, J.1
Aoki, H.2
Izumo, S.3
-
5
-
-
0032191632
-
Expressions and activities of cell cycle regulatory molecules during the transition from myocyte hyperplasia to hypertrophy
-
Poolman RA, Brooks G. Expressions and activities of cell cycle regulatory molecules during the transition from myocyte hyperplasia to hypertrophy. J Mol Cell Cardiol. 1998; 30: 2121-35.
-
(1998)
J Mol Cell Cardiol
, vol.30
, pp. 2121-2135
-
-
Poolman, R.A.1
Brooks, G.2
-
6
-
-
33750863412
-
Role of G1 phase cyclins and cyclin-dependent kinases during cardiomyocyte hypertrophic growth in rats
-
Li JM, Poolman RA, Brooks G. Role of G1 phase cyclins and cyclin-dependent kinases during cardiomyocyte hypertrophic growth in rats. Am J Physiol. 1998; (3 Pt 2): H814-22.
-
(1998)
Am J Physiol
, Issue.3
, pp. H814-H822
-
-
Li, J.M.1
Poolman, R.A.2
Brooks, G.3
-
7
-
-
0033856206
-
G1 cyclins are involved in the mechanism of cardiac myocyte hypertrophy induced by angiotensin II
-
Nozato T, Ito H, Tamamori M, et al. G1 cyclins are involved in the mechanism of cardiac myocyte hypertrophy induced by angiotensin II. Jpn Circ J. 2000; 64: 595-601.
-
(2000)
Jpn Circ J
, vol.64
, pp. 595-601
-
-
Nozato, T.1
Ito, H.2
Tamamori, M.3
-
8
-
-
0036774313
-
Involvement of cyclin D activity in left ventricle hypertrophy in vivo and in vitro
-
Busk PK, Bartkova J, Strøm CC, et al. Involvement of cyclin D activity in left ventricle hypertrophy in vivo and in vitro. Cardiovasc Res. 2002; 56: 64-75.
-
(2002)
Cardiovasc Res
, vol.56
, pp. 64-75
-
-
Busk, P.K.1
Bartkova, J.2
Strøm, C.C.3
-
9
-
-
51649092836
-
Phosphorylation of pRb by cyclin D kinase is necessary for development of cardiac hypertrophy
-
Hinrichsen R, Hansen AH, Haunsø S, et al. Phosphorylation of pRb by cyclin D kinase is necessary for development of cardiac hypertrophy. Cell Prolif. 2008; 41: 813-29.
-
(2008)
Cell Prolif
, vol.41
, pp. 813-829
-
-
Hinrichsen, R.1
Hansen, A.H.2
Haunsø, S.3
-
10
-
-
84865424544
-
Role of D-type cyclins in heart development and disease
-
Hotchkiss A, Robinson J, MacLean J, et al. Role of D-type cyclins in heart development and disease. Can J Physiol Pharmacol. 2012; 90: 1197-207.
-
(2012)
Can J Physiol Pharmacol
, vol.90
, pp. 1197-1207
-
-
Hotchkiss, A.1
Robinson, J.2
MacLean, J.3
-
11
-
-
0347444723
-
MicroRNAs: genomics, biogenesis, mechanism, and function
-
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116: 281-97.
-
(2004)
Cell
, vol.116
, pp. 281-297
-
-
Bartel, D.P.1
-
12
-
-
34249279050
-
MicroRNA-133 controls cardiac hypertrophy
-
Carè A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007; 13: 613-8.
-
(2007)
Nat Med
, vol.13
, pp. 613-618
-
-
Carè, A.1
Catalucci, D.2
Felicetti, F.3
-
13
-
-
70349202176
-
MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice
-
Callis TE, Pandya K, Seok HY, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest. 2009; 119: 2772-86.
-
(2009)
J Clin Invest
, vol.119
, pp. 2772-2786
-
-
Callis, T.E.1
Pandya, K.2
Seok, H.Y.3
-
14
-
-
77954895288
-
Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy
-
Li Q, Song XW, Zou J, et al. Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy. J Cell Sci. 2010; 123: 2444-52.
-
(2010)
J Cell Sci
, vol.123
, pp. 2444-2452
-
-
Li, Q.1
Song, X.W.2
Zou, J.3
-
16
-
-
84867009927
-
The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy
-
Ucar A, Gupta SK, Fiedler J, et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun. 2012; 3: 1078.
-
(2012)
Nat Commun
, vol.3
, pp. 1078
-
-
Ucar, A.1
Gupta, S.K.2
Fiedler, J.3
-
17
-
-
84878294979
-
MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors
-
Ganesan J, Ramanujam D, Sassi Y, et al. MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors. Circulation. 2013; 127: 2097-106.
-
(2013)
Circulation
, vol.127
, pp. 2097-2106
-
-
Ganesan, J.1
Ramanujam, D.2
Sassi, Y.3
-
18
-
-
84884672200
-
Macrophage microRNA-155 promotes cardiac hypertrophy and failure
-
Heymans S, Corsten MF, Verhesen W, et al. Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation. 2013; 128: 1420-32.
-
(2013)
Circulation
, vol.128
, pp. 1420-1432
-
-
Heymans, S.1
Corsten, M.F.2
Verhesen, W.3
-
19
-
-
84877583076
-
MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress
-
Huang ZP, Chen J, Seok HY, et al. MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ Res. 2013; 112: 1234-43.
-
(2013)
Circ Res
, vol.112
, pp. 1234-1243
-
-
Huang, Z.P.1
Chen, J.2
Seok, H.Y.3
-
20
-
-
41749089597
-
Effects of a Rho kinase inhibitor on pressure overload induced cardiac hypertrophy and associated diastolic dysfunction
-
Phrommintikul A, Tran L, Kompa A, et al. Effects of a Rho kinase inhibitor on pressure overload induced cardiac hypertrophy and associated diastolic dysfunction. Am J Physiol Heart Circ Physiol. 2008; 294: H1804-14.
-
(2008)
Am J Physiol Heart Circ Physiol
, vol.294
, pp. H1804-H1814
-
-
Phrommintikul, A.1
Tran, L.2
Kompa, A.3
-
21
-
-
0028354202
-
Molecular and physiological alterations in murine ventricular dysfunction
-
Rockman HA, Ono S, Ross RS, et al. Molecular and physiological alterations in murine ventricular dysfunction. Proc Natl Acad Sci USA. 1994; 91: 2694-8.
-
(1994)
Proc Natl Acad Sci USA
, vol.91
, pp. 2694-2698
-
-
Rockman, H.A.1
Ono, S.2
Ross, R.S.3
-
22
-
-
0031809021
-
Cardiac MRI of the normal and hypertrophied mouse heart
-
Slawson SE, Roman BB, Williams DS, et al. Cardiac MRI of the normal and hypertrophied mouse heart. Magn Reson Med. 1998; 39: 980-7.
-
(1998)
Magn Reson Med
, vol.39
, pp. 980-987
-
-
Slawson, S.E.1
Roman, B.B.2
Williams, D.S.3
-
23
-
-
0032578406
-
Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway
-
Communal C, Singh K, Pimentel D, et al. Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation. 1998; 98: 1329-34.
-
(1998)
Circulation
, vol.98
, pp. 1329-1334
-
-
Communal, C.1
Singh, K.2
Pimentel, D.3
-
24
-
-
84884546885
-
Smad3 inactivation and MiR-29b upregulation mediate the effect of carvedilol on attenuating the acute myocardium infarction-induced myocardial fibrosis in rat
-
Zhu JN, Chen R, Fu YH, et al. Smad3 inactivation and MiR-29b upregulation mediate the effect of carvedilol on attenuating the acute myocardium infarction-induced myocardial fibrosis in rat. PLoS ONE. 2013; 8: e75557.
-
(2013)
PLoS ONE
, vol.8
, pp. e75557
-
-
Zhu, J.N.1
Chen, R.2
Fu, Y.H.3
-
25
-
-
17344392308
-
A new mathematical model for relative quantification in real-time RT-PCR
-
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001; 29: e45.
-
(2001)
Nucleic Acids Res
, vol.29
, pp. e45
-
-
Pfaffl, M.W.1
-
26
-
-
77955659811
-
miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes
-
Shan ZX, Lin QX, Deng CY, et al. miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes. FEBS Lett. 2010; 584: 3592-600.
-
(2010)
FEBS Lett
, vol.584
, pp. 3592-3600
-
-
Shan, Z.X.1
Lin, Q.X.2
Deng, C.Y.3
-
27
-
-
84860788476
-
Downregulation of the tumor-suppressor miR-16 via progestin-mediated oncogenic signaling contributes to breast cancer development
-
Rivas MA, Venturutti L, Huang YW, et al. Downregulation of the tumor-suppressor miR-16 via progestin-mediated oncogenic signaling contributes to breast cancer development. Breast Cancer Res. 2012; 14: R77.
-
(2012)
Breast Cancer Res
, vol.14
, pp. R77
-
-
Rivas, M.A.1
Venturutti, L.2
Huang, Y.W.3
-
28
-
-
2142798069
-
Cyclin D in left ventricle hypertrophy
-
Busk PK, Hinrichsen R. Cyclin D in left ventricle hypertrophy. Cell Cycle. 2003; 2: 91-5.
-
(2003)
Cell Cycle
, vol.2
, pp. 91-95
-
-
Busk, P.K.1
Hinrichsen, R.2
-
29
-
-
0038015105
-
Inhibition of E2F abrogates the development of cardiac myocyte hypertrophy
-
Vara D, Bicknell KA, Coxon CH, et al. Inhibition of E2F abrogates the development of cardiac myocyte hypertrophy. J Biol Chem. 2003; 278: 21388-94.
-
(2003)
J Biol Chem
, vol.278
, pp. 21388-21394
-
-
Vara, D.1
Bicknell, K.A.2
Coxon, C.H.3
-
30
-
-
59849128881
-
miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling
-
Duisters RF, Tijsen AJ, Schroen B, et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res. 2009; 104: 170-8.
-
(2009)
Circ Res
, vol.104
, pp. 170-178
-
-
Duisters, R.F.1
Tijsen, A.J.2
Schroen, B.3
-
31
-
-
33947224690
-
Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycleprogression
-
Linsley PS, Schelter J, Burchard J, et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycleprogression. Mol Cell Biol. 2007; 27: 2240-52.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 2240-2252
-
-
Linsley, P.S.1
Schelter, J.2
Burchard, J.3
-
32
-
-
52649088391
-
miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes
-
Liu Q, Fu H, Sun F, et al. miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res. 2008; 36: 5391-404.
-
(2008)
Nucleic Acids Res
, vol.36
, pp. 5391-5404
-
-
Liu, Q.1
Fu, H.2
Sun, F.3
-
33
-
-
77956937548
-
Apoptosis-associated microRNAs are modulated in mouse, rat and human neural differentiation
-
Aranha MM, Santos DM, Xavier JM, et al. Apoptosis-associated microRNAs are modulated in mouse, rat and human neural differentiation. BMC Genomics. 2010; 11: 514.
-
(2010)
BMC Genomics
, vol.11
, pp. 514
-
-
Aranha, M.M.1
Santos, D.M.2
Xavier, J.M.3
-
34
-
-
84863299371
-
MicroRNA 16 enhances differentiation of human bone marrow mesenchymal stem cells in a cardiac niche toward myogenic phenotypes in vitro
-
Liu JL, Jiang L, Lin QX, et al. MicroRNA 16 enhances differentiation of human bone marrow mesenchymal stem cells in a cardiac niche toward myogenic phenotypes in vitro. Life Sci. 2012; 90: 1020-6.
-
(2012)
Life Sci
, vol.90
, pp. 1020-1026
-
-
Liu, J.L.1
Jiang, L.2
Lin, Q.X.3
-
35
-
-
84872156834
-
The induction of microRNA-16 in colon cancer cells by protein arginine deiminase inhibition causes a p53-dependent cell cycle arrest
-
Cui X, Witalison EE, Chumanevich AP, et al. The induction of microRNA-16 in colon cancer cells by protein arginine deiminase inhibition causes a p53-dependent cell cycle arrest. PLoS ONE. 2013; 8: e53791.
-
(2013)
PLoS ONE
, vol.8
, pp. e53791
-
-
Cui, X.1
Witalison, E.E.2
Chumanevich, A.P.3
-
36
-
-
0029738630
-
Overexpression of the transcription factor UBF1 is sufficient to increase ribosomal DNA transcription in neonatal cardiomyocytes: implications for cardiac hypertrophy
-
Hannan RD, Stefanovsky V, Taylor L, et al. Overexpression of the transcription factor UBF1 is sufficient to increase ribosomal DNA transcription in neonatal cardiomyocytes: implications for cardiac hypertrophy. Proc Natl Acad Sci USA. 1996; 93: 8750-5.
-
(1996)
Proc Natl Acad Sci USA
, vol.93
, pp. 8750-8755
-
-
Hannan, R.D.1
Stefanovsky, V.2
Taylor, L.3
-
37
-
-
78650121847
-
Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies
-
Bernardo BC, Weeks KL, Pretorius L, et al. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther. 2010; 128: 191-227.
-
(2010)
Pharmacol Ther
, vol.128
, pp. 191-227
-
-
Bernardo, B.C.1
Weeks, K.L.2
Pretorius, L.3
-
38
-
-
0032252621
-
Essential roles for G1 cyclin-dependent kinase activity in development of cardiomyocyte hypertrophy
-
Tamamori M, Ito H, Hiroe M, et al. Essential roles for G1 cyclin-dependent kinase activity in development of cardiomyocyte hypertrophy. Am J Physiol. 1998; 275: H2036-40.
-
(1998)
Am J Physiol
, vol.275
, pp. H2036-H2040
-
-
Tamamori, M.1
Ito, H.2
Hiroe, M.3
-
39
-
-
0034926065
-
Overexpression of cdk inhibitor p16INK4a by adenovirus vector inhibits cardiac hypertrophy in vitro and in vivo: a novel strategy for the gene therapy of cardiac hypertrophy
-
Nozato T, Ito H, Watanabe M, et al. Overexpression of cdk inhibitor p16INK4a by adenovirus vector inhibits cardiac hypertrophy in vitro and in vivo: a novel strategy for the gene therapy of cardiac hypertrophy. J Mol Cell Cardiol. 2001; 33: 1493-504.
-
(2001)
J Mol Cell Cardiol
, vol.33
, pp. 1493-1504
-
-
Nozato, T.1
Ito, H.2
Watanabe, M.3
-
40
-
-
33845587364
-
Prostaglandin E2 activates Stat3 in neonatal rat ventricular cardiomyocytes: a role in cardiac hypertrophy
-
Frias MA, Rebsamen MC, Gerber-Wicht C, et al. Prostaglandin E2 activates Stat3 in neonatal rat ventricular cardiomyocytes: a role in cardiac hypertrophy. Cardiovasc Res. 2008; 73: 57-65.
-
(2008)
Cardiovasc Res
, vol.73
, pp. 57-65
-
-
Frias, M.A.1
Rebsamen, M.C.2
Gerber-Wicht, C.3
-
41
-
-
46849087232
-
STAT3 activation in pressure-overloaded feline myocardium: role for integrins and the tyrosine kinase BMX
-
Willey CD, Palanisamy AP, Johnston RK, et al. STAT3 activation in pressure-overloaded feline myocardium: role for integrins and the tyrosine kinase BMX. Int J Biol Sci. 2008; 4: 184-99.
-
(2008)
Int J Biol Sci
, vol.4
, pp. 184-199
-
-
Willey, C.D.1
Palanisamy, A.P.2
Johnston, R.K.3
-
42
-
-
80355134501
-
Transactivated EGFR mediates α1-AR-induced STAT3 activation and cardiac hypertrophy
-
Li Y, Zhang H, Liao W, et al. Transactivated EGFR mediates α1-AR-induced STAT3 activation and cardiac hypertrophy. Am J Physiol Heart Circ Physiol. 2011; 301: H1941-51.
-
(2011)
Am J Physiol Heart Circ Physiol
, vol.301
, pp. H1941-H1951
-
-
Li, Y.1
Zhang, H.2
Liao, W.3
-
43
-
-
84879997983
-
Importance of leptin signaling and signal transducer and activator of transcription-3activation in mediating the cardiac hypertrophy associated with obesity
-
Leifheit-Nestler M, Wagner NM, Gogiraju R, et al. Importance of leptin signaling and signal transducer and activator of transcription-3activation in mediating the cardiac hypertrophy associated with obesity. J Transl Med. 2013; 11: 170.
-
(2013)
J Transl Med
, vol.11
, pp. 170
-
-
Leifheit-Nestler, M.1
Wagner, N.M.2
Gogiraju, R.3
|